期刊文献+

一种基于空间直方图的多特征目标跟踪算法 被引量:1

Multi-feature object tracking algorithm based on spatial histogram
下载PDF
导出
摘要 为提高跟踪算法对光照或背景的大幅度变化和车辆大范围运动的鲁棒性,提出了一种基于空间直方图的多特征目标跟踪算法。算法以自适应权值多特征乘性融合框架为基础,分别建立目标的颜色、边缘和纹理空间直方图,使用Mean Shift迭代,利用各特征空间概率分布图中目标与背景的BH系数,调整特征权值。该算法使跟踪不再过分依赖某一单一特征,实现了复杂背景下目标的准确跟踪。 To increase the robustness to the variation of illumination or background and the large overall motion of the object, a multi-feature tracking algorithm based on spatial histogram is presented. The proposed algorithm is based on the framework of adaptive weights production fusion. Three features spatial histogram of the object are established. The Mean Shift iterative solution is deduced. According to BH coefficient in the sub-feature spatial probabilistic distribution images, the weights are adjusted. The tracking results no longer depend on the single fea- ture too much and the accurate tracking in complex background is realized.
出处 《计算机工程与应用》 CSCD 2012年第19期28-31,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60975028) 中央高校基本科研业务费专项资金(No.CHD2010JC110)
关键词 目标跟踪 多特征 空间直方图 均值漂移 object tracking multi-feature spatial histogram mean-shift
  • 相关文献

参考文献10

  • 1王新红,王晶,田敏,杨煜,李志鹏.基于空间边缘方向直方图的Mean Shift跟踪算法[J].中国图象图形学报,2008,13(3):586-592. 被引量:18
  • 2Maggio E,Cavallaro A.Multi-part target representation for color tracking[].Proceedings of IEEE International Conference on Image Processing.2005
  • 3C O Conaire,N E O’’Connor,A F Smeaton.An improved spatiogram similarity measure for robust object localization[].Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing.2007
  • 4Jwu-Sheng Hua,Chung-Wei Juan.A spatial-color mean-shift object tracking algorithm with scale and orientation esimation[].Pattern Recognition.2008
  • 5S. Birchfield,S. Rangarajan.Spatiograms versus histograms for region-based tracking[].Proc IEEE Conf on Computer Vision and Pattern Recognition.2005
  • 6Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003
  • 7K She,G Bebis,H Gu,et al.Vehicle tracking using on-line fusion of color and shape features[].Intelligent Transportation Systems.2004
  • 8K Smith,D Gatica-Perez,J M Odobez.Using Particles to Track Varying Numbers of Interacting People[].IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR.2005
  • 9Q. Zhao,H. Tao.A motion observable representation using color correlogram and its applications to tracking[].Computer Vision and Image Understanding.2009
  • 10Leichter I,Lindenbaum M,Rivlin E.A probabilistic framework for combining tracking algorithms[].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2004

二级参考文献7

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2003, 25(5): 564 -577.
  • 2Nummiaroa K, Koller-Meierb E, Gool L V. An adaptive color-based particle filter [ J ]. Image and Vision Computing, 2003, 21 ( 1 ) :99 - 110.
  • 3M Isard, Blake A. Condensation-condltional density propagation for visual tracking [ J ]. International Journal of Computer Visiol,, 1998, 29(1): 5-28.
  • 4Perez P, Hue C, Vermaak J,et al. Color-based probabilistic tracking [ A]. In: proceedings of the 7th European Conference on Computer Vision [ C ] , Berlin, Germany, 2002 : 661 - 675.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection [ A]. In : Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[ C ] , San Diego, CA, USA, 2005, 1 : 886 - 893.
  • 6Birchfield S. Rangarajan S. Spatiograms versus histograms for regionbased tracking [ A ]. In: Proceedings of iEEE Computer Society Conference on Computer Vision and Patterm Recognition, San Diego, CA,USA, 2005, 2:1152 - 1157.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [J]. IEEE Computer Vision and Pattern Recognition, 2000, 4(2) : 142-149.

共引文献17

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部