期刊文献+

一种新的车辆遮挡检测与分割方法 被引量:2

New method for detecting and dividing vehicles blocking
下载PDF
导出
摘要 遮挡是图像处理和运动物体跟踪过程中比较难解决的问题。针对交通视频中车辆遮挡问题,提出了一种基于统计模型的车辆遮挡分割算法。该算法在提取出运动车辆的基础上,使用横向-纵向扫描方法对运动车辆前景模板进行去空洞处理,得到完整的运动车辆区域;利用统计模型判断是否发生遮挡,如果判断车辆发生遮挡,在加入纠错机制的前提下得到正确的遮挡点,同时确定遮挡区域;利用边缘提取方法分割出遮挡区域,得到完全分隔的车辆。实验结果表明,该方法能够很好地解决车辆部分遮挡问题。 Blocking is a difficult problem to solve in the process of image processing and moving object tracking. Aiming at the problem for vehicles blocking in traffic videos, this paper proposes a vehicles blocking segmentation algorithm based on a statistical model. To get the whole area of moving vehicles, the algorithm removes empty space in the foreground template, using the horizontal-vertical scanning method, based on the extraction of moving vehicles. Then the occurrence of blocking is determined by the statistical model. If the vehicles are blocked, the method will get the right blocking points and identify the blocking regions under the premise of adding error correc- tion mechanism. Finally, it has divided out the blocking area by edge detection, so as to obtain the completely sepa- rated vehicles. Besides, the experimental results show that this method is able to well solve the problem of partial blocking of vehicles.
出处 《计算机工程与应用》 CSCD 2012年第19期179-182,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60970015) 2009年江苏省省级现代服务业(软件产业)发展专项引导资金项目(No.[2009]332-64) 苏州市应用基础研究(工业)项目(No.SYJG0927 No.SYG201032) 苏州大学科研预研基金
关键词 统计模型 遮挡分割 纠错机制 statistic model block segmentation correcting mechanism
  • 相关文献

参考文献6

  • 1熊昌镇,任建新,李正熙.一种基于轮廓的车辆遮挡检测与分割方法[J].系统仿真学报,2009,21(S1):75-77. 被引量:7
  • 2Leuven J, Leeuwen M B, Groen F C A.Real-time vehicle tracking in image sequences[C]//Proceeding of IEEE Inter- national Conference on Instrumentation and Measure- ment Techenology, Budapest, Hungary, 2001 : 2049-2054.
  • 3Pang C C C, Lain W W L, Ytmg N H C.A novel method for resolving vehicle occlusion in a monocular traffic- image sequence[J].IEEE Transactions on Intelligent Trans- portation Systems, 2004,5 (3) : 129-141.
  • 4Yue Hengjun, Wu Jian, Cao Yanyan, et al.Research on moving vehicle detection in the presence of occlusion[C]// Proceeding of DCABES2010, Hong Kong, China, 2010: 514-517.
  • 5Veeraraghavan H,Masoud O,Papanikolopoulos N ECom- puter vision algorithms for intersection monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,4(2) : 78-89.
  • 6曾艳,于濂.一种新的道路交通背景提取算法及研究[J].中国图象图形学报,2008,13(3):593-599. 被引量:18

二级参考文献15

  • 1袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 2郁梅,王圣男,蒋刚毅.复杂交通场景中的车辆检测与跟踪新方法[J].光电工程,2005,32(2):67-70. 被引量:23
  • 3Surendra Gupte, Osama Masoud, Robert F K Martin, et al. Detection and classification of vehicles [ J ]. IEEE Transactions on Intelligent Transportation Systems,2002,3 ( 1 ) :37 - 47.
  • 4Friedman Nir,Russell Stuart. Image segmentation in video sequences: A probabilistic approach [ A ] . In: Proceedings of UAI'97 the Thirteernth Annual Conference on Vncertainty Artificial Intelligendce [ C ]. Providence, Rhode Island, USA, 1997 : 175 - 181.
  • 5Power P Wayne, Schoonees Johann A. Understanding background mixture models for foreground segmentation [ A ]. In : Proceedings of Image and Vision Computing [ C ]. Auckland, New Zealand, 2002 : 267 - 271.
  • 6Elgammal Ahmed M, Harwood David, Davis Larry. Non-parametric model for background subtraction [ A ] . In: Proceedings of ECCV'2000 the Sixth European Conference on Computer Vision [ C ]. Dublin Ireland ,2000:751 - 767.
  • 7Elgammal Ahmed M. Efficient Nonparametric Kernel Density Estimation for Real Time Computer Vision [ D ]. Ann Arbor, MI, USA: ProQuest Information and Learning Company,2002.
  • 8Koller D, Heinze N, Nagel H-H. Algorithmic characterization of vehicle trajectories from image sequences by motion verbs [ A ]. Proceedings of In: CVPR'91 IEEE computer society conference on Computer Vision and Pattern Recognition [ C ]. Maul, HI, USA, 1991:90 - 95.
  • 9H Veeraraghavan,O Masoud,N P Papanikolopoulos.Computer vision algorithms for intersection monitoring. IEEE Trans.Intell.Transp . 2004
  • 10Cucchiara R,Grana C,Piccardi M,et al.Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2003

共引文献23

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部