期刊文献+

基于多窗体的改进视差图算法及其应用

An Improved Disparity Image Algorithm and Application Based on Multi-window
下载PDF
导出
摘要 针对传统多窗视差图算法和大窗多窗视差图算法的误匹配率高、易受干扰和匹配速度慢等缺点,采用大型聚合窗固定和优化匹配代价计算方法的方式,提出了一种基于多窗体的改进视差图算法。该算法采用图像边缘提取和固定聚合窗相结合的方法,减少了匹配搜索空间;在匹配代价计算过程中,采用计算机缓存技术,提高了算法匹配速度和精度。试验表明相对于传统多窗算法,改进算法减小了图像的误匹配率和时间度,对于噪声以及复杂背景图像有较好的匹配结果、鲁棒性好,可应用于工作环境背景复杂、精度要求较高的工业和立体视觉领域。 The traditional multi-window algorithm and large window multi-window algorithm has high error rate, low robustness and low speed. In order to solute this disadvantages, a new algorithm of fixed large windows and optimization algorithm was proposed. The algorithm use edge extraction, fixed large window processes to reduce the algorithm search space, greatly improve the matching speed and accuracy. During computing matching cost, use the cache technology to increase matching speed. Experimental results show that the algorithm has lower mistakenly matching rate and higher efficiency. This algorithm can effectively filter noise and image edges effect and it has a practical utilization in a complex background and highly accuracy requirements area, such as industry application, computer version fields.
作者 熊邦书 程骏
出处 《失效分析与预防》 2012年第3期143-147,共5页 Failure Analysis and Prevention
基金 国家自然科学基金(61163047) 江西省工业支撑计划(2010GB00405)
关键词 视差图 多窗体 边缘提取 缓存技术 disparity Image multi-windows edge-extraction cache technology
  • 相关文献

参考文献13

  • 1Scharstein D,Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,(01):7-42.
  • 2Richard S. Computer Vision:Algorithms and Applications[M].Springer-verlag,2001.1-812.
  • 3Klaus A,Sormann M,Karner K. Segment-based stereo matching using belief propagation and a selfadapting dissimilarity measure[A].2006.15-18.
  • 4Hong L,Chen G. Segment-based stereo matching using graph cuts[A].2004.74-81.
  • 5Mattoccia S. A locally global approach to stereo correspondence[A].2009.1763-1770.\.
  • 6Stefano L D,Marchionni M,Mattoccia S. A fast area-based stereo matching algorithm[J].Image and Vision Computing,2004,(12):983-1005.
  • 7Hirschmuller H,Innocent P R,Garibaldi J. Real time correlation based stereo vision with reduced border errors[J].International Journal of Computer Vision,2001,(1/2/3):229-246.
  • 8Veksler O. Fast variable window for stereo correspondence using integral images[A].2003.556-561.
  • 9Kanade T,Okutomi M. A stereo matching algorithm with an adaptive window:theory and experiment[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,(09):920-932.doi:10.1109/34.310690.
  • 10Federico T,Stefano M,Luigi D S. Classification and evaluation of cost aggregation methods for stereo correspondence[A].2008.1-8.

二级参考文献6

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部