期刊文献+

关于S-拟正规嵌入子群 被引量:1

On the S-quasinormally embedded subgroups
下载PDF
导出
摘要 设H是有限群G的一个子群。称H在G中S-拟正规嵌入的,如果对于H的每个素因子p,H的Sylowp-子群也是G的某个S-拟正规子群的Sylowp-子群。利用S-拟正规嵌入子群研究有限群的结构,推广了前人的一些结果。 Suppose G is a finite group and H is a subgroup of G. H is said to be S-quasinormally embedded in G if for each prime p dividing | H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G. We investigate the influence of S-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2012年第3期19-22,共4页 Journal of Foshan University(Natural Science Edition)
基金 国家自然科学基金资助项目(11101369) 江苏省高校自然科学基金资助项目(10KJD110004)
关键词 S-拟正规嵌入 P-超可解 P-幂零 S-quasinormally embedded p-nilpotent p-supersolvable
  • 相关文献

参考文献3

二级参考文献42

  • 1苏向盈.有限群的半正规子群[J].数学杂志,1988,8(1):5-9.
  • 2LI Y M, WANG Y M, WEI H Q. On p -nilpotency of finite groups with some subgroups π -quasinormally embedded[J].Acta Math Hungar,2005, 108(4):1 - 17.
  • 3RAIIESTER-BOLINCHES A, PEDRAZA M C.Sufficient conditions for supersolubility of finite groups[J]. J Pure and Applied Algebra,1998,127: 113- 118.
  • 4WANG Y M, WEI H Q, LI Y M. A generalisafion of Kramer's theorem and its applications [ J ]. Bull Austral Math Soc,2002,65:467 -475.
  • 5ROBINSON J S. A course in the theory of groups[ M ]. New York, Heidelberg, Berlin:Springer-Vedag, 1980.
  • 6HUPPERT B. Endliche Gruppen I[ M ]. Berlin, Heidelberg,New York:Springer-VerLag, 1983.
  • 7Doerk K. , Hawkes T.. Finite soluble groups [M]. Berlin/New York:Walter de gruyter,1992.
  • 8Guo Wenbin. The Theory of classes of Groups [M]. Beijing-New York-Dordrecht-Boston-London: Science Press-Kluwer Academic Publishers, 2000.
  • 9Huppert B.. Zur Gaschutzschn Theorie der Formationen [J]. Math. Ann, 1966,164:133-141.
  • 10Du Zhaowei. Hall subgroups and n-separable groups [J]. J. Algebra,1997,195:501-509.

共引文献17

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部