期刊文献+

几类交换子在广义Morrey空间上的估计 被引量:1

Estimate of Some Kind of Commutators on Generalized Morrey Spaces
下载PDF
导出
摘要 设ω_i(x,r)(i=1,2)是R^n×R^+上的可测正函数,当(ω_1,ω_2)∈So,n时,由BMO函数与极大算子M生成的交换子,是从广义Morrey空间L^(P,ω_1)(R^n)到L^(p,ω_2)(R^n)的有界算子.对于奇异积分算子T以及Riesz积分位势算子I_α生成的交换子,也得到了相似的有界性结果.该结论推广了Mizuhara在广义Morrey空间上的相关结论. Let wi(x, r) (i = 1, 2) be a positive measurable function in Rn x R+. If (wl, w2) C S0,n, then the commutators generated by the BMO function and maximal operators M are bounded from Lp,ω1 (Rn) to Lp,ω2 (Rn). Similarly, the commutators generated by the singular integral operator T and the Riesz potential operator Is are also bounded on generalized Morrey spaces. All the results generalize the corresponding results of Mizuhara on the generalized Morrey spaces.
作者 叶晓峰
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第3期375-382,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10961015 No.11161021)资助的项目
关键词 交换子 奇异积分算子 极大算子 Riesz积分位势算子 广义MORREY空间 Commutator, Singular integral operator, Maximal operator, Rieszpotential operator, Generalized Morrey space
  • 相关文献

参考文献11

  • 1Morrey C B. On the solutions of quasi-linear elliptic partial differential equations[J].Transactions of the American Mathematical Society,1938.126-166.doi:10.1090/S0002-9947-1938-1501936-8.
  • 2Chiarcnza F,Frasca M. Morrey spaces and Hardy-Littlewood maximal function[J].Rend Math,1987.273-279.
  • 3Fazio G D,Ragusa M A. Commutators and Morrey spaces[J].Bollettino della Unione Matematica Italiana,1991.323-332.
  • 4Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M].Princeton,New Jersey:Princeton University Press,1983.
  • 5Peetre J. On the theory of Lp,λ spaces[J].Journal of Functional Analysis,1969.71-87.doi:10.1016/0022-1236(69)90022-6.
  • 6Takahiro Mizuhara T. Boundedness of some classical operators on generalized Morrey spaces[A].Tokyo:Springer-Verlag,1991.183-189.doi:10.1007/s11548-008-0259-9.
  • 7Nakai E. Hardy-Littlewood maximal operator,singular integral operators and Riesz potentials on generalized Morrey spaces[J].Mathematische Nachrichten,1994.95-103.doi:10.2337/dc09-2334.
  • 8Takahiro Mizuhara T. Commutators of singular integral operators on Morrey spaces with general growth functions[A].Tokyo:Kyoto University,1999.49-63.doi:10.1021/ic101098v.
  • 9Akbulut A,Gulivev V,Mustafavev R. Boundedness of the maximal operator and singular integral operator in generalized Morrey spaces[EB/OL].http://www.math.cas.cz/preprint/pre-210.pdf,2010.doi:10.1080/15459620902911212.
  • 10Akbulut A,Gulivev V,Mustafavev R. Boundedness of the fractional maximal operator in local Morrey type spaces[J].Complex variables and elliptic equations,2010,(08):739-758.doi:10.1016/j.eatbeh.2009.03.006.

同被引文献13

  • 1周民强.调和分析讲义[M].北京:北京大学出版社,1999..
  • 2Morrey C. On the solutions of quasi-linear elliptic partial differential equations[J]. Trans Amer Math Soc, 1938, 43(1):126-166.
  • 3Peetre J. On the theory of L, spaces[J]. J Funct Anal, 1969, 4(1):71-87.
  • 4Chiarenza F, Frasca M. Morrey spaces and Hardy-Little- wood maximal function[J]. Rend Math Appl, 1987, 7(3/4): 273-279.
  • 5Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator[J]. Math Nachr, 2009, 282(2) :219-231.
  • 6Mizuhara T. Boundedness of some classical operators on generalized Morrey space [C]//Harmonic Analysis, ICM 90 Satellite Proceedings. Tokyo : Springer-Verlag, 1991 : 183 - 190.
  • 7Nakai E. Hardy-Littlewood maximal operators, singular in- tegral operators and Riesz potential on Morrey space [J]. Math Nachr, 1994, 166 ( 1 ) : 95-103.
  • 8Akbulut A, Gulieve V, Mustufaver R. Boundedness of maximal operators on Morrey space with generalized growth functions[EB/OL]. (2010-01-26)[2010-11-28] http://www. math. cas. cz/preprint/pre- 210/pdf.
  • 9Grafakos L, Torres R. Multilinear Calder6n-Zygmund the- ory[J ]. Adv Math, 2002, 165 (1) : 124-164.
  • 10Grafakos L, Torres R. Maximal operator and weighted norm inequalities for multilinear singular integrals [J]. In- diana U Math J, 2002, 51:1261-1276.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部