摘要
设ω_i(x,r)(i=1,2)是R^n×R^+上的可测正函数,当(ω_1,ω_2)∈So,n时,由BMO函数与极大算子M生成的交换子,是从广义Morrey空间L^(P,ω_1)(R^n)到L^(p,ω_2)(R^n)的有界算子.对于奇异积分算子T以及Riesz积分位势算子I_α生成的交换子,也得到了相似的有界性结果.该结论推广了Mizuhara在广义Morrey空间上的相关结论.
Let wi(x, r) (i = 1, 2) be a positive measurable function in Rn x R+. If (wl, w2) C S0,n, then the commutators generated by the BMO function and maximal operators M are bounded from Lp,ω1 (Rn) to Lp,ω2 (Rn). Similarly, the commutators generated by the singular integral operator T and the Riesz potential operator Is are also bounded on generalized Morrey spaces. All the results generalize the corresponding results of Mizuhara on the generalized Morrey spaces.
出处
《数学年刊(A辑)》
CSCD
北大核心
2012年第3期375-382,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10961015
No.11161021)资助的项目