期刊文献+

基于模糊神经网络的水轮机调速器故障诊断 被引量:3

Fault diagnosis of hydro turbine governor based on fuzzy neural networks
原文传递
导出
摘要 分析了水轮机调速器调节过程的故障机理,得到专家经验的故障诊断推理规则,利用模糊逻辑在表达专家知识方面的优势及神经网络的自学习能力,建立模糊神经网络,利用有限的推理规则对模糊神经网络进行训练,得到的模糊神经网络作为专家系统用于水轮机调速器的故障诊断,解决了故障样本获取困难、专家经验获取不足及模糊规则"组合爆炸"的问题,仿真实验证明该网络诊断结果正确,实用性较强。 This paper analyzes fault mechanism of regulating process for hydraulic turbine governor and establishes rules of fault diagnosis according to experts′ experiences.A fuzzy neural network is developed by taking advantages of expert knowledge expression and its self-learning ability.It can be trained with a number of diagnosis rules.As an expert system,it was applied to fault diagnosis for a hydraulic turbine governor,overcoming the difficulties in sample collection,insufficient expert experiences and ′combination explosion′problem of fuzzy rules.Simulation results show that it is a feasible and effective method in fault diagnosis.
出处 《水力发电学报》 EI CSCD 北大核心 2012年第3期234-239,共6页 Journal of Hydroelectric Engineering
关键词 水轮机调速器 故障诊断 模糊神经网络 专家系统 governor of hydro turbine fault diagnosis fuzzy neural networks(FNN) expert system
  • 相关文献

参考文献10

二级参考文献141

共引文献384

同被引文献35

  • 1桂小阳,胡伟,刘锋,梅生伟.基于水轮发电机综合非线性模型的调速器控制[J].电力系统自动化,2005,29(15):18-22. 被引量:24
  • 2程宝清,韩凤琴,桂中华.基于小波的灰色预测理论在水电机组故障预测中的应用[J].电网技术,2005,29(13):40-44. 被引量:20
  • 3黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(9):2291-2294. 被引量:19
  • 4黄俊钦.压力传感器动态数学模型研究[J].计量学报,1987,(3):21-22.
  • 5Zhang Zhijie, Wang Daihua, Wang Wenlian, et al. Correction of Dynamic Error Result from Measurement System Limitations [ J 1 Journal of Measurement Science and Instrumentations, 2010 ( 4 ) : 307-311.
  • 6WU Jian, Zhang Zhijie, Dong Ganggang, et al. Real-Time Correction for Sensors Dynamic Error Based on DSP[ C ]//Proc. of 2011 IEEE International Instrumentation and Measurement Technology Conference, Hang zhou, China: Instrumentation and Measurement Society ,2011:633-639.
  • 7Kramer M A. Nonlinear principal component analysis using auto-associative neural networks [ J ]. AIChE, 1991,37 (4) :313 - 328.
  • 8Dong D,MeAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks [ J ]. Computers and Chemical Engineering, 1996,20( 1 ) :65-78.
  • 9Tan S, M avrovouniotis M L. Reducing data dimensionality through optimizing neural network inputs [ J ]. A1ChE, 1995,41 (6) :1471- 1480.
  • 10Seh6lkopf B, Smola J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10 (5) :1299-1319.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部