摘要
利用不动点理论和算子变换的方法,给出了Banach空间中具有非局部条件的脉冲拟线性积-微分方程适度解的存在性。所用的方法可对f是连续紧算子和f是Lipschitz连续的情形进行统一处理。
The existence of mild solutions is concerned with for impulsive quasilinear integrodifferential equations with nonlocal conditions.The results are obtained by using the fixed point combined with the technique of operator transformation.In the technical framework developed several cases can be dealed with simultaneously,such as f is completely continuous or Lipschitz continuous.
出处
《科学技术与工程》
北大核心
2012年第18期4317-4320,共4页
Science Technology and Engineering
基金
泰州市科技发展计划项目(2011046
2011047)
南京师范大学泰州学院数学分析精品课程项目(141220160314)资助
关键词
积-微分方程
脉冲
非局部条件
不动点
适度解
integrodifferential equations impulsive nonlocal condition fixed point mild solutions