期刊文献+

具有非局部条件的脉冲拟线性积-微分方程适度解的存在性

Existence Results for Impulsive Quasilinear Integrodifferential Equations with Nonlocal Condition
下载PDF
导出
摘要 利用不动点理论和算子变换的方法,给出了Banach空间中具有非局部条件的脉冲拟线性积-微分方程适度解的存在性。所用的方法可对f是连续紧算子和f是Lipschitz连续的情形进行统一处理。 The existence of mild solutions is concerned with for impulsive quasilinear integrodifferential equations with nonlocal conditions.The results are obtained by using the fixed point combined with the technique of operator transformation.In the technical framework developed several cases can be dealed with simultaneously,such as f is completely continuous or Lipschitz continuous.
作者 朱寿国
出处 《科学技术与工程》 北大核心 2012年第18期4317-4320,共4页 Science Technology and Engineering
基金 泰州市科技发展计划项目(2011046 2011047) 南京师范大学泰州学院数学分析精品课程项目(141220160314)资助
关键词 积-微分方程 脉冲 非局部条件 不动点 适度解 integrodifferential equations impulsive nonlocal condition fixed point mild solutions
  • 相关文献

参考文献8

  • 1Liang J,Liu J H,Xiao T J. Nonlocal impulsive proble-ms for nonlinear differential equations in Banach spaces[J].Mathematical and Computer Modelling,2009.798-804.
  • 2Fa Z B,Li G. Existence results for semilinear differential equations with nonlocal and impulsive cond-itions[J].Journal of Functional Analysis,2010.1709-1727.
  • 3Balachandran K,Samuel F P. Existence of mild solut-ions for quasilinear integrodifferentisl equations wi-th impulsive conditions[J].Electronic Journal of Differential Equations,2009.1-9.
  • 4Dong Q X,LI G,Zhang J. Quasilinear nonlocal integro-differential equations in Banach space[J].Electron J-Diff Eqns,2008.1-8.
  • 5Banas J,Goebel K. Measure of noncompactness in B-anach spaces[A].New York,USA:Marcel Dekker,Inc,1980.
  • 6嵇绍春,李刚.非局部条件下脉冲微分方程的适度解[J].扬州大学学报(自然科学版),2010,13(1):13-16. 被引量:5
  • 7Bothe D. Multivalued perturbation of maccretive differential inclusions[J].Israel Journal of Mathematics,1998.109-138.doi:10.1007/BF02783044.
  • 8Kisielewicz M. Multivalued differential equations in separable Banach spaces[J].Journal of Optimization Theory and Applications,1982.231-249.doi:10.1007/BF00934769.

二级参考文献12

  • 1LIANG Jin, LIU James H, XIAO Ti j un. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces [J]. Math Comput Model, 2009, 49(3/4): 798-804.
  • 2BENCHOHRA M, HENDERSON J, NTOUYAS S K, et al. On first order impulsive dynamic equations on time scales [J]. J Difference Equ Appl, 2004, 10(6):541-548.
  • 3FAN Zhen-bin. Impulsive problems for semilinear differential equations with nonlocal conditions[J]. Nonlinear Anal: Theory, Methods & Appl, 2010, 72(2): 1104-1109.
  • 4BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem [J]. J Math Anal Appl, 1991,162(2):494-505.
  • 5LIANG Jin, LIU James H, XIAO Ti-jun. Nonlocal Cauehy problems governed by compact operator families [J]. Nonlinear Anal, 2004, 57(2): 183-189.
  • 6I.IU James H. Nonlinear impulsive evolution equations[J]. Dyn Cont Discrete Impuls Syst, 1999, 6(1): 77-85.
  • 7CARDINALI T, RUBBIONI P. On the existence of mild solutions of semilinear evolution differential inclusions [J]. J Math Anal Appl, 2005, 308(2): 620-635.
  • 8BANAS J, GOEBEL K. Measure of noncompactness in Banach spaces [M]//BANAS J. Lecture Notes in Pure & Applied Math. New York: Dekker, 1980: 9-60.
  • 9HEINZ H P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions [J]. Nonlinear Anal TMA, 1983, 7(12): 1351-1371.
  • 10MONCH H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces [J]. Nonlinear Anal: Theory, Melhods &. Appl, 1980, 4(5) : 985-999.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部