摘要
目的:制备Eudragit S100纳米颗粒。方法:采用超临界流体强化溶液分散(SEDS)法制备,考察了Eudragit S100浓度、超临界CO2流速、溶液流速、压力、温度对Eudragit S100纳米粒形貌和粒径的影响,并用场发射扫描式电子显微镜、激光粒度分析仪、差示扫描量热仪、傅里叶变换红外光谱仪对样品进行表征。结果:SEDS法可以制备球形的、粒径分布窄的Eudragit S100纳米粒,所得纳米粒的平均粒径在90~220 nm之间。降低Eudragit S100浓度和温度、升高压力有利于制备形貌好、粒径小的纳米粒;提高超临界CO2流速和降低溶液流速也有利于制备粒径小的纳米粒,但当超临界CO2流速升高至4 kg/h或溶液流速降低至0.5 ml/min时,纳米粒的产率较低。SEDS处理后Eudratit S100仍以无定形态存在,且SEDS过程没有对Eudratit S100的化学键造成破坏。结论:采用SEDS法可用于Eudragit S100纳米粒的制备,工艺简单可行。
Objective: To prepare Eudragit S100 nanoparticles.Methods: Eudragit S100 nanoparticles were prepared by solution enhanced dispersion by supercritical fluids(SEDS) technique.The effects of Eudragit S100 concentration,flow rate of supercritical CO2,solution flow rate,pressure and temperature on the morphology and the particle size of nanoparticles were investigated.Results: The results showed that nanoparticles with regular spherical shape and smaller particle size distribution could be produced by SEDS tech-nique.The mean particle size of nanoparticles prepared was varied 90~220 nm.The lower Eudragit S100 concentration and temperature coupled with higher pressure favored smaller and more regular spherical nanoparticles.It was also helpful for the smaller and more regu-lar spherical nanoparticle preparation at higher flow rate of supercritical CO2 and lower solution flow rate,however,when the flow rate of supercritical CO2 increased to 4 kg/h or the solution flow rate decreased to 0.5 ml/min,the yield of the nanoparticles was relatively low.In addition,the differential scanning calorimetry and fourier transform infrared spectroscopy analysis showed that the Eudragit S100 nanoparticles were present in the form of amorphous and the SEDS process didn't cause damage on the chemical bond of Eudragit S100.Conclusions: The preparation of Eudragit S100 nanoparticles by SEDS technique was feasible.
出处
《现代生物医学进展》
CAS
2012年第16期3074-3079,共6页
Progress in Modern Biomedicine
基金
上海市科委纳米技术专项基金(1052nm04000)
上海交通大学医工交叉基金(090YG016)