期刊文献+

超临界流体强化溶液分散法制备Eudragit S100纳米颗粒 被引量:1

Preparation of Eudragit S100 Nanoparticles by Solution Enhanced Dispersion by Supercritical Fluids(SEDS) Technique
原文传递
导出
摘要 目的:制备Eudragit S100纳米颗粒。方法:采用超临界流体强化溶液分散(SEDS)法制备,考察了Eudragit S100浓度、超临界CO2流速、溶液流速、压力、温度对Eudragit S100纳米粒形貌和粒径的影响,并用场发射扫描式电子显微镜、激光粒度分析仪、差示扫描量热仪、傅里叶变换红外光谱仪对样品进行表征。结果:SEDS法可以制备球形的、粒径分布窄的Eudragit S100纳米粒,所得纳米粒的平均粒径在90~220 nm之间。降低Eudragit S100浓度和温度、升高压力有利于制备形貌好、粒径小的纳米粒;提高超临界CO2流速和降低溶液流速也有利于制备粒径小的纳米粒,但当超临界CO2流速升高至4 kg/h或溶液流速降低至0.5 ml/min时,纳米粒的产率较低。SEDS处理后Eudratit S100仍以无定形态存在,且SEDS过程没有对Eudratit S100的化学键造成破坏。结论:采用SEDS法可用于Eudragit S100纳米粒的制备,工艺简单可行。 Objective: To prepare Eudragit S100 nanoparticles.Methods: Eudragit S100 nanoparticles were prepared by solution enhanced dispersion by supercritical fluids(SEDS) technique.The effects of Eudragit S100 concentration,flow rate of supercritical CO2,solution flow rate,pressure and temperature on the morphology and the particle size of nanoparticles were investigated.Results: The results showed that nanoparticles with regular spherical shape and smaller particle size distribution could be produced by SEDS tech-nique.The mean particle size of nanoparticles prepared was varied 90~220 nm.The lower Eudragit S100 concentration and temperature coupled with higher pressure favored smaller and more regular spherical nanoparticles.It was also helpful for the smaller and more regu-lar spherical nanoparticle preparation at higher flow rate of supercritical CO2 and lower solution flow rate,however,when the flow rate of supercritical CO2 increased to 4 kg/h or the solution flow rate decreased to 0.5 ml/min,the yield of the nanoparticles was relatively low.In addition,the differential scanning calorimetry and fourier transform infrared spectroscopy analysis showed that the Eudragit S100 nanoparticles were present in the form of amorphous and the SEDS process didn't cause damage on the chemical bond of Eudragit S100.Conclusions: The preparation of Eudragit S100 nanoparticles by SEDS technique was feasible.
出处 《现代生物医学进展》 CAS 2012年第16期3074-3079,共6页 Progress in Modern Biomedicine
基金 上海市科委纳米技术专项基金(1052nm04000) 上海交通大学医工交叉基金(090YG016)
关键词 超临界二氧化碳 超临界流体强化溶液分散法 纳米粒 EUDRAGIT S100 PH依赖 Supercritical CO2 SEDS Nanoparticles Eudragit S100 pH-dependent
  • 相关文献

参考文献20

  • 1Kumar P,Mishra B. Colon targeted drug delivery systems-an overview[J].Current Drug Delivery,2008,(03):186-198.doi:10.2174/156720108784911712.
  • 2Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract:from the mouth to the colon[J].International Journal of Pharmaceutics,2010,(1-2):44-52.doi:10.1016/j.ijpharm.2010.05.003.
  • 3Shah N,Shah T,Amin A. Polysaccharides:a targeting strategy for colonic drug delivery[J].Expert Opin Drug Deliv,2011,(06):779-796.doi:10.1517/17425247.2011.574121.
  • 4Kietzmann D,Moulari B,Bé duueau A. Colonic delivery of carboxyfluorescein by pH-sensitive microspheres in experimental colitis[J].European Journal of Pharmaceutics and Biopharmaceutics,2010,(02):290-295.doi:10.1016/j.ejpb.2010.06.013.
  • 5Khan MZ,Stedul HP,Kurjakovi(c) N. A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers.Ⅱ.Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations[J].Drug Development and Industrial Pharmacy,2000,(05):549-554.doi:10.1081/DDC-100101266.
  • 6Jaiu D,Panda AK,Majumdar DK. Eudragit S100 entrapped insulin microspheres for oral delivery[J].AAPS Pharm Sci Tech,2005,(01):E100-E107.
  • 7Sancin P,Caputo O,Cavallari C. Effects of ultrasound-assisted compaction on Ketoprofer/Eudragit S100mixtures[J].European Journal of Pharmaceutical Sciences,1999,(03):207-213.doi:10.1016/j.urolonc.2007.04.003.
  • 8Kalani,M,Yunus,R. Application of supercritical antisolvent method in drug encapsulation:a review[J].Int J Nanomedicine,2011.1429-1442.doi:10.1016/j.fertnstert.2008.11.002.
  • 9Mishima,K. Biodegradable part icle formation for drug and gene delivery using supercritical fluid and dense gas[J].Advanced Drug Delivery Reviews,2008,(03):411-432.doi:10.1016/j.addr.2007.02.003.
  • 10陈岚,乔培,高丹丹,刘哲鹏.超临界流体强化溶液分散法制备L-聚乳酸微粒[J].中国医药工业杂志,2011,42(3):193-197. 被引量:4

二级参考文献14

  • 1Li YJ,Shimizu H.Improvement in toughness of poly (Llactide) (PLLA) through reactive blending with acrylonitrilebutadiene-styrene copolymer (ABS):Morphology and properties[J].EurPolym J,2009,45 (3):738-746.
  • 2Bilati U,Allemann E,Doelker E.Strategic approaches for overcoming peptide and protein instability within biodegradable nano-and microparticles[J].Eur J Pharm Biopharm,2005,59 (3):375-388.
  • 3Vila A,S6nchez A,Evora C,et al.PLA-PEG particles as nasal protein carriers:the influence of the particle size[J].Int JPharm,2005,292 (1-2):43-52.
  • 4Pasquali 1,Bettini R,Giordano F.Supercritical fluid technologies:An innovative approach for manipulating the solid-state of pharmaceuticals[J].Adv Drug Deliv Rev,2007,28(6):1-12.
  • 5Franceschi E,Cesaro AM,Ferreira SRS,et al.Precipitation ofp-carotene microparticles from SEDS technique using supercritical CO2[J].J Food Eng,2009,95 (4):656-663.
  • 6Wang YL,Pfeffer R,Dave R,et al.Polymer encapsulation of fine particles by a supercritical antisolvent process[J].AIChE J,2005,51(2):440-455.
  • 7De Diego YP,Pellikaan HC,Wubbolts FE,et al.Operating regimes and mechanism of particle formation during the precipitation of polymers using the PCA process[J].J Supercrit Fluid,2005,35 (2):147-156.
  • 8Tsivintzelis I,Missopolinou D,Kalogiannis K,et al.Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane[J].Fluid Phase Equilib,2004,224 (1):89-96.
  • 9Leea LY,Liang KL,Huab J,et al.Jet breakup and droplet formation in near-critical regime of carbon dioxidedichloromethane system[J].Chem Eng Sci,2008,63 (13):3366-3378.
  • 10Martin A,Bouchard A,Hofland GW,et al.Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation[J].JSupercrit Fluid,2007,41(1):126-137.

共引文献3

同被引文献14

  • 1宋方平,朱启安,王树峰,陈万平.反相微乳液法合成纳米钛酸钡球形颗粒[J].无机化学学报,2006,22(2):355-358. 被引量:24
  • 2Grundy J S, Foster R T. The nifedipine gastrointestinaltherapeutic system ( GITS) [ J] . Clinical Pharmacokinet-ics, 1996, 30(1) : 28-51.
  • 3KOPECEK J. Targetable polymeric anticancer drugs tem-poral control of drug activity[ J]. Annals of the New YorkAcademy of Sciences, 1991,618( 1 ) ; 335-344.
  • 4Han S, Mahato R I, Sung Y K, et al. Development ofbiomaterials for gene therapy [ J ]. Molecular Therapy,2000’ 2(4) : 302-317.
  • 5Khan M Z,Prebeg Z,Kurjakovic N. A pH-dependentcolon targeted oral drug delivery system using methacrylicacid copolymers (I) : manipulation of drug release usingEudragit? L100-55 and Eudragit? S100 combinations[J]. Journal of Controlled Release, 1999, 58(2) : 215-222.
  • 6Donsi F, Wang Y W, Li J, et al. Preparation of curcu-min sub-micrometer dispersions by high-pressure homoge-nization[ J]. Journal of Agriculture and Food Chemistry,2010,58(5) : 2848-2853.
  • 7Zhang Z B, Shen Z G, Wang J X, et al. Nanonization ofmegestrol acetate by liquid precipitation[ J]. Industrial &Engineering Chemistry Research, 2009,48(18) : 8493 -8499.
  • 8Bleich J,Muller B W. Production of drug loaded microp-arlicles by the use of supercritical gases with the aerosolsolvent extraction system ( ASES) process[ J]. Journal ofMicroencapsulation, 1996, 13(2): 131-139.
  • 9De Zordi N, Kikic I, Moneghini M,et al. Piroxicam sol-id state studies after processing with SAS technique [ J ].Journal of Supercritical Fluids, 2010, 55( 1) : 340-347.
  • 10Duarte ARC, Roy C,Vega-Gonzdlez A, et al. Prepara-tion of acetazolamide composite microparticles by super-critical anti-solvent techniques [ J ]. International Journalof Pharmaceutics, 2007,332(1): 132-139.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部