期刊文献+

新型TiO_2(B)/碳复合纳米线负极材料电化学特性研究 被引量:2

Growth and Characterization of TiO_2(B)/C Composite Nanowire and Its Application as Anode Material in Li-Ion Battery
下载PDF
导出
摘要 以锐钛矿TiO2粉末为原料,通过简单的两次水热及氩气气氛下热处理工艺,制备出新型TiO2(B)/碳一维复合纳米线材料。研究结果表明该复合纳米线主要是由TiO2(B)所组成,其外层包覆一层无定形碳以形成特殊的一维壳/核结构;这种特殊一维壳/核结构和化学组成在诸多领域都将会有着极其广泛应用。本文锂离子电池测试结果证实该复合纳米线电极具有超高的可逆循环电池容量和倍率充放电容量,在30 mAg-1充放电速率下,该TiO2(B)/碳一维壳核结构材料100圈循环后容量高达560 mAhg-1;在750 mAg-1充放电速率下,充放电容量达到200 mAhg-1。鉴于其优良的电化学性能,该一维复合结构材料有望成为下一代最有前途的锂离子电池电极材料。 A novel type of the TiO2(B)/C composite nanowire was developed by the two-step hydrothermal synthesis, followed by annealing in argon atmosphere. Various factors influencing the film growth were evaluated. The micmstmctures and electrochemical properties of the nano-wire were characterized with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show that the composite nanowires consist of the TiO2 core surrounded by amorphous carbon shell,and that it has favorable electrochemical properties. A prototyped Li-ion battery was fabricated with the TiO2(B)/C composite nanowire as the anode material. The nanowires display excellent cyclic performance and rate capacity. For example, after 100 cycles at a current density of 30 mAg^-1, its reversible capacity was found to be 560 mAhg^- 1 with excellent cycling stability and the rate capacity (200 mAhg^- 1, when cycled at 750 mAg^- 1 ). We suggest that the TiO2(B)/C composite nanowire be a potential anode material for Li-ion battery.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2012年第6期533-538,共6页 Chinese Journal of Vacuum Science and Technology
基金 教育部留学人员回国启动基金项目(LXKQ201101) 福建省自然基金项目(2010J01332)
关键词 TiO2(B)/碳 锂离子电池 一维壳/核结构 复合纳米材料 TiO2(B)/Carbon, Lithium-ion battery,One-dimensional core/shell structure, Composite nanomaterials
  • 相关文献

参考文献27

  • 1Wang H,Abe T,Maruyama S. Graphitized Carbon Nanobeads with an Onion Texture as a Lithium-lon Battery Negative Electrode for High-Rate Use[J].Advanced Materials,2005.2857-2860.
  • 2Lahiri I,Oh S W,Hwang J Y. High Capacity and Excellent Stability of Lithium Ion Battery Anode Using InterfaceControlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper[J].ACS Nano,2010,(06):3440-3446.
  • 3Ji L,Zhang X. Fabrication of Porous Carbon Nanofibers and Their Application as Anode Materials for Rechsrgesble Lithium-Ion Batteries[J].Nanotechnology,2009.155705(7.
  • 4Chew S Y,Ng S H,Wang J. Flexible Free-Standing Carbon Nanotube Films for Model Lithium-lon Batteries[J].Carbon,2009.2976-2983.
  • 5YangS,Feng X,Zhi L. Nanographene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage[J].Advanced Materials,2010.838-842.
  • 6Yoshio M,Wang H,Fukuda K. Spherieal Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material[J].Angewabdte Chemie-International Edition,2003.4203-4206.
  • 7陈雷锋,蒋红,宋航,赵海峰,李志明,黎大兵,郭万国,曹连振,刘霞.电泳和电镀法增强碳纳米管场发射特性的研究[J].真空科学与技术学报,2010,30(1):64-67. 被引量:10
  • 8郝邦元,田时开.直接在金属基片上生长超长宏观定向纳米碳纤维[J].真空科学与技术学报,2009,29(5):562-564. 被引量:2
  • 9Ji X,Lee K T,Nazar L F. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries[J].Nature Materials,2009.500-506.
  • 10Ji L,Zhang X. Generation of Activated Carbon Nanofibers from Electrospun Polyacrylonitrile-Zinc Chloride Composites for Use,as Anodes in Litium-Ion Batteries[J].Electrochemistry Communications,2009.684-687.

二级参考文献15

  • 1彭宇才,陈清.毫米级长定向碳纤维阵列的制备[J].真空科学与技术学报,2005,25(5):362-366. 被引量:2
  • 2吕文辉,宋航,金亿鑫,赵辉,赵海峰,李志明,蒋红,缪国庆,刘乃康.电泳淀积图形化碳纳米管场发射阴极及其场发射特性研究[J].真空科学与技术学报,2007,27(3):213-217. 被引量:10
  • 3Li W Z, Xie S S, Qian L X, et al. Science. 1996,274:1701.
  • 4Bacsa R R, Ch Laurent A, Peigney W, et al. Chem. Phys. Lett. 2000,323: 566.
  • 5Endo M, Kim Y A, Hayashi T, et al. Carbon[J]. 2001,39 (9) : 1287.
  • 6Merkulov V I, Lowndes D H, Baylor L R, et al. Solid-state Electronics[ J ]. 2001,45 : 949.
  • 7Dilion A C, Jones K M, Bekkedahl T A, et al. Nature [ J ]. 1997,386(6623) : 377.
  • 8Tsai Ting-Kan, Chuang Chia-Chih. chao choen-guang, et al. Diamond Relat Mate. 2003,12:1453.
  • 9Klein K L, Melechko A V. Rack P D. et al. Carbon, 2005,43: 1857.
  • 10Qin Yong. Zhang Zhikun, Cui Zuolin. Carbon[J]. 2003,41 (15) :3072.

共引文献10

同被引文献46

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
  • 2Geim A K,Novoselov K S.The Rise of Graphene[J].Nature Materials,2007,6(3):183-191.
  • 3Hui Z,He P,Dai Y,et al.The Optimal Initial Configuration of Silicon-Functionalized Graphene for Lithium-Ion Battery Anode[J].Proceedings of the Institution of Mechanical Engineers,Part N:Journal of Nanoengineering and Nanosystems,2014.
  • 4Stoller M D,Park S,Zhu Y,et al.Graphene-Based Ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
  • 5Xin Z,Cary M,Hayner,et al.In-Plane Vacancy-Enabled High-Power Si–Graphene Composite Electrode for Lithium-Ion Batteries[J].Advanced Energy Materials,2011,(1):1079-1084.
  • 6Hui Z X.Multiple LAMMPS Script of Graphene Crystal Cell[C].Applied Mechanics and Materials,2014,538:32-35.
  • 7Tersoff J.New Empirical Approach for the Structure and Energy of Covalent Systems[J].Physical Review,1988,B37(12):6991.
  • 8Tersoff J.Modeling Solid-State Chemistry:Interatomic Potentials for Multicomponent Systems[J].Physical Review,1989,B39(8):5566-5568.
  • 9Tersoff J.Erratum:Modeling Solid-State Chemistry:Interatomic Potentials for Multicomponent Systems[J].Physical Review,1990,B 41(5):3248-3248.
  • 10Baskes M I.Many-Body Effects in Fcc Metals:a LennardJones Embedded-Atom Potential[J].Physical Review Letters,1999,83(13):2592-2595.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部