期刊文献+

电磁悬浮飞轮转子系统的模态解耦控制 被引量:10

Modal decoupling control for active magnetic bearing-supported flywheel rotor system
下载PDF
导出
摘要 基于电磁悬浮飞轮转子系统的数学模型,首先提出了一种在高速下能够使电磁悬浮飞轮转子系统保持稳定运行的模态解耦控制方法,然后对这种方法的解耦效果以及控制的有效性进行了仿真分析,并与传统分散PD控制的性能进行了比较。结果表明提出的模态解耦控制方法可以实现对电磁轴承飞轮转子系统的转动模态和平动模态间的解耦,以达到对各个模态的刚度和阻尼进行独立调节,使电磁悬浮飞轮转子系统具有更好的动态性能和更强的抗干扰能力的目的。 For an active magnetic bearing-supported flywheel rotor system with significant gyroscopic effect,its high nutation mode frequency greatly affects its stability at high rotational speeds.Therefore,it is necessary to develop some advanced control methods which can be used to directly control the dynamical characteristics of rotor modes.For such a rotor,since significant coupling between conical and parallel modes,traditional decentralized PD controllers are not suitable any more.A new method called modal decoupling control is proposed in this paper.The method is based on mathematic models of flywheel rotor system which can stabilize the active magnetic bearing-supported flywheel rotor system at high rotational speeds.The principle of the modal decoupling control is introduced,and the decoupling control ability and effectiveness are analyzed numerically.It is shown that the proposed control can separately regulate each modal stiffness and damping through decoupling between conical and parallel modes,and obviously improve the dynamic behaviors and anti-interference capacities of active magnetic bearing-supported flywheel rotor system with significant gyroscopic effect.
作者 章琦 祝长生
出处 《振动工程学报》 EI CSCD 北大核心 2012年第3期302-310,共9页 Journal of Vibration Engineering
基金 浙江省科技厅公益技术应用研究项目(2011C21021)
关键词 电磁悬浮飞轮 陀螺效应 模态解耦控制 主动电磁轴承 active magnetic bearing-supported flywheel gyroscopic effects modal decoupling control active magnetic bearing
  • 引文网络
  • 相关文献

参考文献3

二级参考文献27

  • 1张晓友,金永德.五轴控制型磁轴承控制系统设计[J].哈尔滨工业大学学报,1994,26(2):41-47. 被引量:3
  • 2龙志强,金永德.磁悬浮轴承的控制系统设计[J].机电工程,1994,11(1):18-20. 被引量:10
  • 3[1]Horiuchi Y, Sato M I. Development of magnetic bearing momentum wheel for ultra-precision spacecraft attitude control. Seventh International Symp. on Magnetic Bearings, ETH Zurich, 2000, 8: 525~530
  • 4[2]Ahrens M. Performance of a magnetically suspended flywheel energy storage device. IEEE Transactions on Control Systems Technology, 1996, 4(5): 494~502
  • 5[3]Schweitzer G, Bleuler H, Traxler A. Active magnetic bearings ? basics, properties and application of active magnetic bearings. ETH, Switzerland: Hochschulverlag AG, 1994
  • 6[4]Hilton E F, Humphrey M A. Design of an open source, hard real time, controls implementation platform for active magnetic bearings. In: Seventh International Symp. on Magnetic Bearings, ETH Zurich , 2000, 8: 329~334
  • 7[5]Humphrey M, Hilton E, Allaire P. Experiences using RT-Linux to implement a controller for a high speed magnetic bearing system. In: Proceedings of the 5th IEEE Real-Time Technology and Applications Symposium, Vancouver, Canada, 1999: 121~130
  • 8[6]Barabanov M A. Linux-based real-time operating system: [MS Dissertation]. Virginia, USA:Virginia University, 1997
  • 9[7]Zhong Y E, He Y Z, Wang Z. Rotor Dynamics. Beijing: Tsinghua Technomic Publishing Co., 1987
  • 10[8]Ahrens M, Kucera L, Larsonneur R. Performance of a magnetically suspended flywheel energy storage device. IEEE Transactionson Control System Technology, 1996, 4(5): 494~502

共引文献22

同被引文献89

引证文献10

二级引证文献50

相关主题

;
使用帮助 返回顶部