期刊文献+

简化的混合估计算法及其在GPS/SINS深组合中的应用 被引量:2

Hybrid Estimation Algorithm Based on Simplified UKF for Ultra Tight Coupling GPS/SINS System
下载PDF
导出
摘要 为解决GPS/SINS深组合导航系统滤波的非线性和噪声的不确定性的问题,针对深组合模型特点,设计了一种简化的基于U滤波的多模型混合估计滤波器。根据系统模型中状态方程是线性方程、观测方程是非线性方程的特点,提出了一种简化的U滤波算法(Ultra tight coupling unscented Kalman filter,UTCUKF),然后针对噪声变化建立了非线性模型,多模型混合估计滤波器的输出为各滤波器的概率加权融合,因此模型概率是根据噪声变化而调整的,从而也使系统输出对噪声变化具有一定自适应能力。最后进行了仿真,并与基于普通U滤波的多模型混合估计算法进行了比较。结果表明,本文算法的解算时间短,模型切换速度更快,而估计的精确度与同条件下的基于普通U滤波的多模型混合估计算法相当,更符合深组合系统高动态的要求。 According to the feature of ultra tight coupling GPS/SINS system, in which the state equation is linear and the measurement equation is nonlinear, a new simplified unscented Kalman filter(UKF) is proposed. Then a new multiple model hybrid estimation algorithm based on the simplified UKF is pre- sented to solve the problem of nonlinear filtering and noise modeling. The uncertainty of the noise can be described by a set of switching models. The output of the multiple model hybrid estimation filter is the weighted sum of a bank of parallel filters. The self-adaptive filtering for different noises can be per- formed by the adjustment of all modelsr weights. Finally, the simulation and comparison are given. The application of the algorithm on ultra tight coupling GPS/SINS system shows a higher switching speed of the algorithm than that of hybrid estimation based on common UKF, and indicates that the algorithm has the same accuracy with the common one in the same condition. The algorithm meets the demands of ultra tight coupling GPS/SINS system.
作者 杨洋 薛晓中
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第3期360-365,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 南京理工大学科研发展基金(XKF05031)资助项目
关键词 U滤波 多模型混合估计 深组合 组合导航 unscented Kalman filter multiple model hybrid estimation ultra tight coupling integrated navigation
  • 相关文献

参考文献10

  • 1Tanizaki H. Nonlinear filters:Estimation and Application[M].New York,USA:SpringerVerlag,1996.
  • 2曹洁,文如泉.IMM-UPF算法在机动目标跟踪中的研究[J].计算机工程与应用,2010,46(28):240-243. 被引量:3
  • 3Oshman Y,Koifman M. Robust,IMM-based,tightly-coupled INS/GPS in the presence of spoofing[A].Providence,USA:AIAA,2004.1246363.
  • 4臧荣春,崔平远,崔祜涛,金艺.基于IMM-UKF的组合导航算法[J].控制理论与应用,2007,24(4):634-638. 被引量:16
  • 5Jilkov V P,Li X R,Lei Lu. Performance enhancement of the IMM estimation by smoothing[A].MD,USA,2002.713-720.
  • 6Perea L,How J,Breger L. Nonlinearity in sensor fusion:divergence issues in EKF,modified truncated SOF,and UKF[A].Hilton Head,USA:AIAA,2007.6514.
  • 7Sworder D D,Boyd J E. Estimation problems in hybrid systems[M].Cambridge:Cambridge University Press,1999.
  • 8Hao Yanling,Xiong Zhilan,Sun Feng. Comparison of unscented Kalman filters[A].Harbin,China:IEEE,2007.895-899.
  • 9Wu Yuanxin,Hu Dewen,Wu Meiping. Unscented Kalman filtering for additive noise:Augmented versus nonaugmented[J].IEEE Signal Processing Letters,2005,(05):357-360.doi:10.1109/LSP.2005.845592.
  • 10王惠南.GPS导航原理与应用[M]北京:科学出版社,2003.

二级参考文献13

  • 1王志刚,芮国胜,胡昊.UPF算法及其在目标跟踪中的应用[J].雷达科学与技术,2005,3(1):20-24. 被引量:12
  • 2邓小龙,谢剑英,杨煜普.基于交互式多模型的粒子滤波算法[J].系统仿真学报,2005,17(10):2360-2362. 被引量:19
  • 3王来雄,黄士坦.一种新的基于粒子滤波的多模型跟踪算法[J].信号处理,2005,21(5):470-474. 被引量:1
  • 4吕娜,冯祖仁.非线性交互粒子滤波算法[J].控制与决策,2007,22(4):378-383. 被引量:12
  • 5Kim B D,Lee J S.IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C]// 2005 IEEE International Radar Conference, Arlington, Virginia, USA,May 2005:757-762.
  • 6JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonliear systems[C]//Proc of American Control Conference. Seattle, WA: IEEE Press, 1995:1628 - 1632.
  • 7JULIER S J, UHLMANN J K. The scaled unscented transformation[C]//Proc of American Control Conference. Anchorage, AK:IEEE Press, 2002:4555 - 4559.
  • 8LI X R, BAR-SHALOM Y. Performance prediction of the IMM algorithms[J]. IEEE Trans on American Electrochemical Society (AES),1993, 29(3): 755 - 770.
  • 9LI X R, BAR-SHALOM Y. Model-Set adaptation in multiple-model estimation for hybrid systems[C]//Proc of American Control Conference. San Francisco, CA: [s.n.], 1992:1794 - 1799.
  • 10KIRUBARAJAN T, BAR-SHALOM Y. Kalman filter versus IMM estimerator: When do we need the latter?[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1452 - 1456.

共引文献17

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部