期刊文献+

基于假设检验的自适应粒子滤波红外目标跟踪 被引量:2

Infrared Target Tracking for Auto-adaptive Particle Filtering Based on Hypothesis Test
下载PDF
导出
摘要 在实时性要求较高的非线性非高斯环境中,粒子滤波中的粒子数选取将直接影响红外目标跟踪效果。为此,提出一种基于假设检验的自适应粒子滤波算法。通过假设检验问题中样本容量的选取确定粒子数,解决因粒子数过大造成的时间损耗。实验结果表明,该算法在保证目标跟踪准确度的同时可减少跟踪延时,具有较好的实时跟踪效果。 Particle filtering is taken as the main solution for solved infrared target tracking problems in nonlinear/non-Gaussian system.The selection of number of particle set directly influences on the tracking effect on which particle filtering dose in high real-time system.Based on the problem,a novel algorithm based on hypothesis test in auto-adaptive particle filtering is proposed for target tracking in infrared imagery real-time system.According to the hypothesis test problems,the number of particle set is dynamic got,which works out the problem of high time consume that larger number of particle set is taken.Experimental results performed on several infrared image sequences show the robustness and better real-time performance of the proposed algorithm.
出处 《计算机工程》 CAS CSCD 2012年第11期153-155,159,共4页 Computer Engineering
基金 中国博士后科学基金资助项目(20110490193)
关键词 红外目标跟踪 粒子滤波 假设检验 模板更新 时间复杂度 均方误差 infrared target tracking particle filtering hypothesis test template update time complexity Mean Square Error(MSE)
  • 相关文献

参考文献8

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174- 188.
  • 2Nummiaro K Meier E K, Gool L V. An Adaptive Color-based Particle Filter[J]. Image and Vision Computing, 2003, 21(1): 99- 110.
  • 3Pan Pan, Schonfeld D. Dynamic Proposal Variance and Optimal Particle Allocation in Particle Filtering for Video Tracking[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2008, 18(9): 1268-1279.
  • 4Orton M, Fitzgerald W. A Bayesian Approach to Tracking MultipleTargets Using Sensor Arrays and Particle Filters[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 216-223.
  • 5盛骤,谢式千,潘承毅.概率论与数理统计[M].4版.北京:高等教育出版社,2010.
  • 6Chen Chong, Schonfeld D. A Particle Filtering Framework for Joint Video Tracking and Pose Estimation[J]. IEEE Trans. on Image Processing, 2010, 19(6): 1625-1634.
  • 7程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 8Han Cheol-Hun, Sim Kwee-Bo. The Improved Particle Filter for Motion Estimation[C]//Proc. of International Conference on Fuzzy Systems. [S. 1.]: IEEE Press, 2009: 2175-2179.

二级参考文献11

共引文献72

同被引文献29

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2邓小龙,谢剑英,倪宏伟.Improved Particle Filter for Target Tracking[J].Chinese Journal of Aeronautics,2005,18(2):166-170. 被引量:4
  • 3刘金山,张国权.正态-逆Wishart先验信息下多元线性模型的后验似然比检验[J].应用概率统计,2005,21(4):351-358. 被引量:2
  • 4杜正聪,唐斌,李可.混合退火粒子滤波器[J].物理学报,2006,55(3):999-1004. 被引量:23
  • 5Wren C, Azarhayejani A, Darrell T, et al. Pfinder: real- time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :780 - 785.
  • 6SHeikkilgM, Pietikinen M. A texture - based method for modeling the background and detecting moving objects [J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2006,28(4) :657 - 662.
  • 7Alzoubi Hussein,Pan W David. Efficient global motion esti- mation using fixed and random subsampling patterns[C]// Proceedings of the International Conference on Image Pro- cessing(IPIC). San Antonio,USA,2007, Vol. 1 : 477 - 480.
  • 8Eberhart R C, Kennedy J. Particles swarm optimization[C]// IEEE International Conference on Neural Network, Perth, Australia, 1995, Vol. 4 : 1942 - 1948.
  • 9Wang Xue, Ma Jun - Jie, Wang Sheng, et al. Distributed Particle Swarm Optimization and Simulated Annealing for Energy- efficient Coverage in Wireless Sensor Networks [J]. Sensors,2007,7(5):628-648.
  • 10Shengli Song, Li Kong, Pu Zhang, et al. Particle Swarm Optimization Algorithm Based on Space Mutation and its Application[C]//ISA 2009. International Workshop on In- telligent Systems and Applications, 2009:1 -4.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部