期刊文献+

基于相关反馈和流形结构重构的图像检索方法 被引量:1

Image Retrieval Method Based on Relevance Feedback and Manifold Structure Reconstruction
下载PDF
导出
摘要 当检索样例位于数据库之外时,传统基于线性流形学习的图像检索方法在反馈迭代后的检索精度提高较小。为此,提出一种基于相关反馈和流形结构重构的图像检索方法。反馈时计算被检索样例的最邻近点,将被检索样例重构入需要保留的结构图中,从而满足映射时需保证相似图像和被检索样例距离尽可能近的要求。实验结果表明,该方法在额外耗时较少的情况下,能有效提高检索精度。 In the case that sample is out of database,retrieval precision of the existing image retrieval methods based on linear manifold learning has smaller increase after feedback.Aiming at this problem,this paper proposes an image retrieval method based on Relevance Feedback(RF) and manifold reconstruction.It reconstructs sample into structure graph which needs to be reserved by computing the nearest neighbor in relevance feedback,thus can meet the need of that the distance between similar images and sample is mapped as near as possible.Experimental result shows that the method can improve retrieval precision while merely increase milliseconds time.
出处 《计算机工程》 CAS CSCD 2012年第11期202-204,207,共4页 Computer Engineering
基金 高等学校博士点基金资助项目(20100009120004) 中央高校基本科研业务费基金资助项目(2011JBM011) 惠州学院自然科学研究基金资助项目(C211.0222)
关键词 流形学习 基于内容的图像检索 相关反馈 流形结构重构 维数约减 语义流形 manifold learning Content-based Image Retrieval(CBIR) Relevance Feedback(RF) manifold structure reconstruction dimension reduction semantic manifold
  • 相关文献

参考文献9

  • 1刘利,韦佳,马千里.基于流形学习的图像检索研究进展[J].北京交通大学学报,2010,34(5):164-171. 被引量:5
  • 2Seung H S, Lee D D. The Manifold Ways of Perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 3He Xiaofei, Niyogi P. Locality Preserving Projections[C]//Proc. of Annual Conference on Neural Information Processing System. Cambridge, USA: MIT Press, 2004: 327-334.
  • 4He Xiaofei. Incremental Semi-supervised Subspace Learning for Image Retrieval[C]//Proc. of the 12th Annual ACM Conference on Multimedia. New York, USA: ACM Press, 2004: 2-8.
  • 5Lin Yen-Yu, Liu Tyng-Luh, Chen Hwann-Tzong. Semantic Manifold Learning for Image Retrieval[C]//Proc. of the 13th Annual ACM International Conference on Multimedia. Singapore: ACM Press, 2005: 249-258,.
  • 6He Xiaofei, Cai Deng, Han Jiawei. Learning a Maximum Margin Subspace for Image Retrieval[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 189-201.
  • 7Wang Can, Zhao Jun, He Xiaofei, et al. Image Retrieval Using Nonlinear Manifold Embedding[J]. Neurocomputing, 2009, 72(16/18): 3922-3929.
  • 8黄鸿,冯海亮,何同弟.融合流形学习与相关反馈的人脸图像检索[J].华南理工大学学报(自然科学版),2011,39(5):91-96. 被引量:3
  • 9Wang J Z. Test Database[DB/OL]. [2011-08-10]. http://wang. ist.psu.edu/-jwang/test 1 .zip.

二级参考文献64

  • 1鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 2鲁珂,赵继东,吴跃,何晓飞.基于保局投影的相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(1):20-24. 被引量:8
  • 3张道强 陈松灿.高维数据降维方法.中国计算机学会通讯,2009,5(8):15-22.
  • 4Ritendra Datta, Dhiraj Joshi, Jia Li, et al. Image Retrieval: Ideas, Influence, and Trends of the New Age[J]. ACM Computer Surveys, 2008,40 (2) : 5 : 1 - 5/60.
  • 5Yong Rui, Thomas S, Huang Fellow, et al. Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval [J].IEEE Transactions on Circuits and Systems for Video Technology, 1998,8(5) : 644- 655.
  • 6Sam T Roweis, Lawrence K Saul. Nonlinear Dimensionality Analysis By Locally Linear Embedding [ J]. Science, 2000,290 (5500) :2323 - 2326.
  • 7Joshua B Tenenbaum, Vinde Silva, John C Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science, 2000,290 (5500) : 2319 - 2323.
  • 8Seung H S, Lee D D. The Manifold Ways of Perception [ J ]. Science, 2000,290 (22) : 2268 - 2269.
  • 9Zhou Dengyong, Ohvier Bousquet, Thomas Navin Lal, et al. Ranking on Data Manifolds[C]// Advances in Neural Information Processing Systems,2003.
  • 10He Jingrui, Li Mingjing, Zhang Hongjiang, et al. Manifold-Ranking Based Image Retrieval[ C]//Proceedings of the 12th annual ACM international conference on Multimedia,2004:9- 16.

共引文献5

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部