期刊文献+

改进的多光谱遥感影像超分辨率重构算法 被引量:1

Improved Super-resolution Reconstruction Algorithm for Multi-spectral Remote Sensing Image
下载PDF
导出
摘要 针对现有遥感影像重构算法数据资源有限、配准精度低等问题,结合遥感影像的光谱特征,提出一种改进的多光谱遥感影像超分辨率重构算法。提取场景结构特征作为重构的正则化约束条件,保持重构结果中的高频信息。利用波段间的交叉相关,获得场景的结构特征信息。通过迭代反投影算法对单波段影像进行重构,将其合成为全色高分辨率遥感影像。仿真实验结果表明,该算法的重构效果较优。 Aiming at the problem of limited data resourse and lower precision of registration of the present super-resolution reconstruct method,combined with the abundant spectral information of remote sensing image,an improved super-resolution reconstruction method is proposed.It uses cross correlation between two bands,which is useful for the preserving of high frequency component.The correlation of bands can obtain the feature information,iterative back projection is used to reconstruct every single band image,and these single high resolution images are synthesized to a panchromatic remote sensing image.Experimental results show that the reconstruction effectiveness of the algorithm is good.
出处 《计算机工程》 CAS CSCD 2012年第11期205-207,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60872096) 中央高校基本科研业务费基金资助项目(2011B11414)
关键词 多光谱遥感影像 超分辨率重构 特征信息 迭代反投影 正则化 multi-spectral remote sensing image super-resolution reconstruction feature information iterative back projection regularization
  • 相关文献

参考文献8

  • 1Tsai R Y, Huang T S. Multiframe Image Restoration and Regi-stration[J]. Advances in Computer Vision and Image Processing, 1984, 1(2): 317-339.
  • 2Chan J C W, Ma J, Kempeneers P, et al. An Evaluation of Ecotope Classification Using Superresolution Images Derived from Chris/Proba Data[C]//Proe. of IGARSS'08. Boston, USA: [s. n.], 2008.
  • 3Li Feng, Jia Xiuping, Fraser D. Superresolution Reconstrucion of Multispectral Data for Improved Image Classification[J]. IEEE Trans. on Geoscienee and Remote Sensing, 2009, 6(4): 689-693.
  • 4Akgun T, Altunbasak Y, Mersereau R M. Super-resolution Recon- struction of Hyperspectral Images[J]. IEEE Trans. on Image Processing, 2005, 14(11): 1860-1875.
  • 5Dijk J, van Eekeren A W M, Schutte K, et al. Performance Study on Point Target Detection Using Super-resolution Recon- struction[C]//Proe, of SPIE'09. Orlando, USA: [s. n.], 2009.
  • 6Boucher A, Kyriakidis P C. Super-resolution Land Cover Mapping with Indicator Geostatistics[J]. Remote Sensing of Environment, 2006, 104(3): 264-282.
  • 7Kasetkasem T, Arora M K, Varshney P K. Super-resolution Land Cover Mapping Using a Markov Random Field Based Approach[J]. Remote Sensing of Environment, 2005, 96(3/4): 302-314.
  • 8Molina R, Mateos J, Katsaggelos A K. Super-resolution Recon- struction of Multispectral Images[M]//Virtual Observatory. Plate Content Digitalization, Archive Mining and Image Sequence Processing. [S. 1.]: Heron Press, 2006.

同被引文献13

  • 1CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information [ J ]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509.
  • 2DONOHO D L. Compressed sensing [ J]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 -1306.
  • 3ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding [ C]. Proceedings of the IEEE International Conference on Computer Vision. Washington DC: IEEE Computer Society, 2013 : 217 -224.
  • 4DO NOHO D L. De-noising by soft-thresholding [ J ]. IEEE Transactions on Information Theory, 1995,41 (3) : 613 C -627.
  • 5AFONSO M, BIOUCAS-DIAS J, FIGUEIREDO M. Fast image recovery using variable splitting and constrained optimization[ J]. IEEE Transac- tions on Image Process, 2010, 19(9) : 2345 -2356.
  • 6ZHANG J, ZHAO D B, ZHAO C, et al. Image compressive sensing recovery via collaborative sparsity[J]. IEEE Journal on Emerging and Se- lected Topics in Circuits and Systems, 2012, 2(3) : 380- 391.
  • 7WANG Y, YANG J, YIN W, et al. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal on Ima- ging Sciences, 2005, 1 (3) : 248 - 272.
  • 8LI C, YIN W, ZHANG Y. TVAL3: TV minimization by augmented lagrangian and alternating direction algorithm [ EB/OL]. http://www. caam. rice. edu/- optimization/Ll/TVAL3/, 2009.
  • 9CHEN C, TRAMEL E W, FOWLER J E. Compressed sensing recovery of images and viedo using multihy-pothesis predictions [ C ]. Proceedings of the 45th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA : IEEE, 2011 : 1193 - 1198.
  • 10戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:215

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部