期刊文献+

一类具有变人口规模的含时滞SIS流行病模型的全局稳定性 被引量:1

Global Stability of SIS Epidemiologic Model with Delay and Variable Population Size
下载PDF
导出
摘要 在文献[1]讨论的一类总人口变化且含有时滞的SIS流行病模型而得到的各类平衡点局部渐近和无病平衡点全局渐近稳定的结论基础上,进一步考虑疾病流行的持续性.利用构造Lia-punov函数的方法,得到了地方平衡点全局渐近稳定的一个充分条件. An SIS epidemiologic model with delay and variable population size was studied in one of our previous paper, where the local stability of all kinds of equilibria and global stability of the dis- ease-free equilibrium were discussed. On this basis, the persistence of the disease was further con- sidered. By constructing Liapunov functions a sufficient condition of the global stability of endemic equilibrium was provided.
出处 《上海理工大学学报》 CAS 北大核心 2012年第3期267-271,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10871129) 上海市教委创新基金资助项目(09YZ208)
关键词 SIS流行病模型 地方病平衡点 持续性 全局渐近稳定 SIS epidemic model endemic equilibrium persistence global stability
  • 相关文献

参考文献5

二级参考文献13

  • 1原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 2Miller, R. K. , Nonlinear Volterra Integral Equations, Menlo Park, Benjamin, 1971.
  • 3Hethcote, H. W., van den Driessche, P. , An SIS epidemic model with variable population size and a delay,J.Math. Biol., 1995,34 : 177-194.
  • 4Busenberg, S., Cooke, K. L. , Pozio, A., Analysis of a model of a vertically transmitted disease, J. Math. Biol., 1983,17:305-329.
  • 5Busenberg, S. , Cooke, K. L., Vertically Transmitted Diseases, Biomathematis Vol. 23, Berlin, Heidelberg,New York: Springer-Verlag, 1993.
  • 6Brauer, F., Models for the spread of universally fatal diseases,J. Math. Biol., 1990,28:451-462.
  • 7Brauer, F. , Models for universally fatal diseases, II. In: Busenberg, S. and Martelli, M. , eds. , Differential Equations Models in Biology, Epidemiology and Ecology, Lecture Notes in Biomathematies 92, Berlin, Heidelberg, New York: Springer-Verlag, 1991,57-69.
  • 8Castillo-Chavez, C., Cooke, K., Huang, W., et al. , On the role of long incubation periods in the dynamics of AIDS I : Single Population Models. J. Math. Biol. , 1989,27 : 373-398.
  • 9Thieme, H. R., Castillo-Chaves, C. , How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 1993,53: 1447-1479.
  • 10Hethcote,H. W. , Yorke,J. A. ,Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematies 56, Berlin, Heidelberg, New York: Springer-Verlag, 1984.

共引文献19

同被引文献15

  • 1陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006.
  • 2Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128.
  • 3Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688.
  • 4Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721.
  • 5Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742.
  • 6Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32.
  • 7van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540.
  • 8Zhou Y L,Zhang W G,Yuan S L.Survival and stationary distribution of a SIR epidemic model with stochastic perturbations[J].Applied Mathematics And Computation,2014,244:118-131.
  • 9Jiang D Q,Yu J J,Ji C Y,et al.Asymptotic behavior of global positive solution to a stochastic SIR model[J].Mathematical and Computer Modelling,2011,54(1/2):221-232.
  • 10Zhao Y N,Jiang D Q.The threshold of a stochastic SIRS epidemic model with saturated incidence[J].Applied Mathematics Letters,2014,34:90-93.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部