期刊文献+

严格对角占优M-矩阵的||A^(-1)||_∞上界的新估计式 被引量:2

Estimation on Upper Bounds for ||A^(-1)||_∞ of Strictly Dominant Diagonal M-matrices
下载PDF
导出
摘要 设A为严格对角占优的M-矩阵,首先仅利用矩阵A的元素给出A-1的元素新的上界估计式,其次利用这些估计式给出了||A-1||∞新的上界估计式,并由此给出了A的最小特征值q(A)下界的估计式.这些新的估计式改进了已有的结果. Let A be a real strictly dominant diagonal M-matrix. Firstly, some new upper bounds for the entries of A^-1 are given and these bounds only depend on the entries of matrix A. Secondly, some new upper bounds of ||A^-1||∞ are given. Furthermore,the lower bounds of the smallest eigenvalue of q(A) is presented. These bounds improve the existing results.
作者 蒋建新
机构地区 文山学院数理系
出处 《文山学院学报》 2012年第3期36-39,共4页 Journal of Wenshan University
基金 文山学院科研基金项目"特殊的三对角矩阵特征值界的估计"(WSYQ01)
关键词 对角占优矩阵 M-矩阵 矩阵的无穷大范数 上界 最小特征值 Dominant Diagonal matrix M-matrix Infinity norms of matrices Upper bound Minimum eigenvalue
  • 相关文献

参考文献6

  • 1李艳艳.非奇异M-矩阵的Hadamard积的特征值界的估计[J].文山学院学报,2011,24(3):37-40. 被引量:2
  • 2陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 3Shivakumar P.N., Chew K.H. A sufficient condition for nonvanishing of determinants [ J ] . Proc Amer.Math.Soc. 1974, 43 : 63-66.
  • 4Cheng G-H, Huang T-Z. An upper bound for IId-ql of strictly diagonally dominant M- matrices [ J 1 . Linear Algebra Appl. 2007, 426: 667-673.
  • 5Yao-tang Li, Yan-yan Li. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [ J ] . Linear Algebra Appl, 2010, 432: 536-545.
  • 6李艳艳,李耀堂.严格对角占优M-矩阵的逆矩阵的无穷大范数上界的估计[J].云南民族大学学报(自然科学版),2012,21(1):52-56. 被引量:18

二级参考文献8

  • 1Yao - tang Li, Yah -yan Li. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [ J ]. Linear Algebra App1,2010 ,432 :536 - 545.
  • 2R. S. th. Varga. Minimal Gerschgorin sets [ J ]. Pacific J. Math. 1965, (2) :719 -729.
  • 3M. Fiedler, T. L. Markham. An inequality for the Hadamard product of an M-matrix and inverse M-matrix [ J ]. Linear Algebra Appl, 1988:1 -8.
  • 4SHIVAKUMAR P N, CHEW K H. A sufficient condition for nonvanishing of determinants [ J ]. Proc Amer Math Soc, 1974,43 (1) :63-66.
  • 5CHENG Guang-hui, HUANG Ting-zhu. An upper bound for ‖A^-1‖∞ of strictly diagonally dominant M - matrices [ J ]. Linear Algebra and its Applications,2007,426 (2/3) :667 - 673.
  • 6陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 7李艳艳,李耀堂.矩阵Hadamard积和Fan积的特征值界的估计[J].云南大学学报(自然科学版),2010,32(2):125-129. 被引量:20
  • 8王亚强,李耀堂,孙小军,李艳艳.严格对角占优M-矩阵的‖A^(-1)‖_∞上界的一个新的估计式(英文)[J].山东大学学报(理学版),2010,45(4):43-47. 被引量:10

共引文献81

同被引文献10

  • 1陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 2Shivakumar P.N.,Chew K.H.A sufficient condition for nonvanishing of determinants[J].Proc Amer.Math.Soc,1974,43:63-66.
  • 3Cheng G-H,Huang T-Z.An upper bound for ‖A-1‖∞ of strietly diagonally dominant M-matrices[J].Linear Algebra Appl,2007,426:667-673.
  • 4Yao-tang Li,Yah-yah Li.Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices[J].Linear AlgebraAppl,2010,432:536-545.
  • 5T.Z.Huang,Y.Zhu.Estimation of ‖ A-1‖∞ for weakly chained diagonally dominant M matrices.Linear Algebra and its Applications 2010,432:670-677.
  • 6SHIVAKUMAR P N,CHEW K H.A sufficient condition for nonvanishing of determinants[J].Proc Amer Math Soc,1974,43:63-66.
  • 7HUANG T Z,ZHU Y.Estimation of ‖A-1‖∞ for weakly chained diagonally dominant M matrices[J].Linear Algebra and its Applications,2010,432:670-677.
  • 8CHENG G H,HUANG T Z.An upper bound for ‖A-1‖∞ of strictly diagonally dominant M-matrices[J].Linear Algebra Appl.2007,426:667-673.
  • 9LI Y T,LI Y Y.Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices[J].Linear Algebra App1,2010,432:536-545.
  • 10李艳艳,李耀堂.严格对角占优M-矩阵的逆矩阵的无穷大范数上界的估计[J].云南民族大学学报(自然科学版),2012,21(1):52-56. 被引量:18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部