摘要
"可证"的算子用法与谓词用法是严格区分概念层次的结果。"可证"的算子用法是从命题外部来理解"可证"的,而它的谓词用法则是从命题内部来理解的。哥德尔自指命题是否导致悖论,关键在于如何理解"可证"概念。如果把"可证"理解为语句算子,那么哥德尔自指命题就不会导致悖论。否则,如果把它理解为谓词,那么哥德尔自指命题就会导致悖论。
The operator and the predicate uses of "provable" are the results of distinguishing levels strictly. The operator use of "provable" looks "provable" outside a proposition, while its predicate use inside. Whether Godel' s Self-Reference Proposition leads to paradox depends on how to under- stand the essential concept improvable. In normal inference, if concept improvable is taken as a sen- tential operator, G^del' s Self-Reference Proposition can not lead to a paradox. Otherwise, if it is taken as a predication, Gt^del' s Self-Reference Proposition can lead to a paradox.
出处
《重庆理工大学学报(社会科学)》
CAS
2012年第6期8-10,27,共4页
Journal of Chongqing University of Technology(Social Science)
基金
教育部人文社会科学研究项目"面向信息处理的情境语义学研究"(08JC720016)资助
关键词
可证
算子
谓词
真
provable
operator
predicate
true