摘要
The mechanism of slag entrapment in the mould was analyzed and the water modeling experiment was done according to the industrial manufacturing. The results show that the flow of the liquid steel becomes more active and the level fluctuation in the mould becomes bigger when the casting speed increases from 1.0 m/min to 1.2 m/min. So the control of slag entrapment in the mould becomes more difficult. When the depth of the nozzle increases from 30mm to 42. 5mm and the angle increases from 15~ downward to 30° downward, the level fluctuation in the mould becomes smaller and the slag entrapment in the mould also decreases. But the impact depth increases and the circumfluence vortex center moves downward, which is unfavorable for the flotation of gas bubbles and inclusions. Furthermore, the impact depth with side holes a ( 16.3 × 20mm2 ) and b ( 10 × 10 mm2 ) is almost equal, but a smaller level fluctuation can be obtained with side hole a.
The mechanism of slag entrapment in the mould was analyzed and the water modeling experiment was done according to the industrial manufacturing. The results show that the flow of the liquid steel becomes more active and the level fluctuation in the mould becomes bigger when the casting speed increases from 1.0 m/min to 1.2 m/min. So the control of slag entrapment in the mould becomes more difficult. When the depth of the nozzle increases from 30mm to 42. 5mm and the angle increases from 15~ downward to 30° downward, the level fluctuation in the mould becomes smaller and the slag entrapment in the mould also decreases. But the impact depth increases and the circumfluence vortex center moves downward, which is unfavorable for the flotation of gas bubbles and inclusions. Furthermore, the impact depth with side holes a ( 16.3 × 20mm2 ) and b ( 10 × 10 mm2 ) is almost equal, but a smaller level fluctuation can be obtained with side hole a.