期刊文献+

厚松散含水层下重复采动覆岩破坏规律分析 被引量:3

Failure overburden law analysis of the repeated mining under the thick unconsolidated aquifers
下载PDF
导出
摘要 在厚松散含水层下采煤时,由于含水层可传递上覆表土层的载荷,导致工作面容易产生溃砂、突水事故.为了避免在回采过程中发生溃砂、突水事故,结合朱仙庄煤矿864工作面的实际条件,建立复合隔水关键层的力学模型,采用数值模拟对厚松散含水层下特厚煤层分别在上分层2.5,3.0,3.5,4.O m综采、下分层6.5,6.O,5.5,5.0 m综放和一次性全厚放顶煤进行开采,确定安全开采的方案.研究结果表明:在上分层为3 m下分层6综放时,裂缝带发育的高度最低、覆岩破坏的最终形态最缓和,在工作面回采过程中最为安全. Because of the load of the overlying alluvium can be passed by inrush accident happens easily on burst face when people are mining under thick aquifers, collapse of sand and water and unconsolidated aquifers. In order to avoid collapse of sand and water inrush accident occurred in the mining process, the project should combine the actual conditions of 864 in Zhuxianzhuang coal mine working face and establish mechanical models of composite riser critical layer. The numerical simulation for thick coal seam under thick and unconsolidated aquifer respectively is 2.5,3.0, 3.5,4.0 m mechanized mining in the up stratified, 6.5,6.0,5.5,5.0 m fully mechanized caving under the hierarchical and one - time full - thickness caving exploitation. The safety of mining programmes must be determined. Research results show that the situation of minimum crack development height, the most ease eventually forms on overburden failure and the safest about mine working face will appear when the numerical simulation is 3.0 m mechanized mining in the up stratified. 6.0 m fully mechanized caving under the hierarchical.
出处 《矿业工程研究》 2012年第2期23-26,共4页 Mineral Engineering Research
基金 安徽省杰出青年基金资助项目(1108085J02)
关键词 松散含水层 隔水关键层 导水裂隙高度 数值模拟 loose aquifer water- resisting key strata height of water conducted zone numerical simulation
  • 相关文献

参考文献9

二级参考文献19

  • 1康永华,耿德庸,茹瑞典,孔凡铭,范国强,黄福昌.综采顶水开采条件下提高回采上限试验研究[J].煤炭科学技术,1995,23(6):1-5. 被引量:4
  • 2钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106. 被引量:211
  • 3钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230. 被引量:736
  • 4黄盛初,朱超,刘馨,等.中国煤矿区煤层气开发产业化前景[C].2001年煤矿区煤层气项目投资与技术国际研讨会论文集.上海,2001.
  • 5茅献彪,矿山压力与顶板管理,1997年,3/4卷,1页
  • 6钱鸣高,矿山压力及其控制(修订本),1992年,66页
  • 7团体著者,煤矿地表移动与覆岩破坏规律及其应用,1981年
  • 8缪协兴,矿山压力与顶板管理,1999年,3/4期,5页
  • 9许家林,岩层移动与控制的关键层理论及其应用[D],1999年
  • 10缪协兴,面向国民经济可持续发展战略的岩石力学与岩石工程,1998年,527页

共引文献1318

同被引文献29

  • 1刘增辉,杨本水.利用数值模拟方法确定导水裂隙带发育高度[J].矿业安全与环保,2006,33(5):16-19. 被引量:72
  • 2国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2010.
  • 3Jing L,Stephansson O,Nordlund E. Study of rock joints under cyclic loading conditions[J].{H}Rock Mechanics and Rock Engineering,1993,(03):215-232.
  • 4Barton N. Review of a new shear strength criterion for rock joints[J].{H}Engineering Geology,1973,(04):287-332.
  • 5Asadollahi P,Tonon F. Constitutive model for rock fractures:revisiting Barton's empirical model[J].{H}Engineering Geology,2010,(1/4):11-32.
  • 6Lopeza P,Rissa J,Archambault G. An experimental method to link morphological properties of rock fracture surfaces to their mechanical properties[J].{H}International Journal of Rock Mechanics and Mining Sciences,2003.947-954.
  • 7Yu Jingjiang,Bo Li,Yuji Yamashita. Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method[J].{H}International Journal of Rock Mechanics and Mining Sciences,2009.97-106.
  • 8Voss R. The science of fractual images[M].New York Berlin Heidelberg:Springer,1998.21-69.
  • 9Tse R,Cruden D M. Estimating joint roughness coefficients[J].{H}International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1979,(04):303-307.
  • 10Mas Ivars D. Water inflow into excavations in fractured rock--a three-dimensional hydro-mechanical numerical study[J].{H}International Journal of Rock Mechanics and Mining Sciences,2006.705-725.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部