期刊文献+

Ta-7.5%W在退火过程中的组织和织构演变 被引量:2

Microstructures and textures evolution of Ta-7.5%W during annealing process
下载PDF
导出
摘要 通过金相组织观察、透射电子显微镜(TEM)及显微硬度测试,研究冷轧变形量为95%的Ta-7.5%W合金箔材在1050,1200和1360℃退火时的组织和性能变化,并采用取向密度函数(ODF)分析在此过程中其织构演变规律。对其实验结果进行研究发现:冷轧态Ta-7.5%W合金硬度为HV300,经1360℃退火后硬度迅速减小,说明此时合金已发生回复再结晶。轧制后的Ta-7.5%W合金箔材具有各向异性,在轧面//{111}取向上形成位错胞亚结构,在轧面//{100}取向上形成了形变带,冷轧态的主要织构为{001}110,{112}110和{110}110织构;在1200℃退火时,在轧面//{111}取向上,再结晶通过亚晶界迁移、亚晶长大形核,而在轧面//{100}取向上,主要是通过亚晶转动、聚合形核;{001}110织构增强,{112}110织构减弱;在1360℃退火时,{001}110织构急剧减弱,{111}112织构增强。 The organization and performance evolution of Ta-7.5%W at 1 050, 1 200 and 1 360℃ were investigated by microstructure observation, transmission electron microscope (TEM) and hardness tests, and the texture evolution was investigated by orientation density function (ODF). It was found that after 1 360 ℃ annealing the hardness decreases rapidly from HV 300 to HV 240, and the recovery recrystallization occurs. Ta-7.5%W is anisotropic; the dislocation substructure appears in {111} orientation and the deformation zone appears in {100} orientation. The main textures of cold-rolled Ta-W alloy are {001} (110), {112} (110) and {110} (110). As the annealing temperature is 1 200℃, the recrystallization nucleation is mainly through the migration of the subgrain boundary and the growth of the subgrain in { 111 } orientation, while the recrystallization nucleation is mainly through the rotation and polymerization of the subgrain in { 100} orientation; the texture of {001 } (110) increases and the texture of { 112} (110) decreases. While annealing at 1 360℃, the texture of {001 } (110) decreases rapidly, and the texture of { 111 } (112) increases.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期883-889,共7页 Journal of Central South University:Science and Technology
基金 国家高技术研究发展计划("863"计划)项目(2006AA03Z517) 湖南省自然科学基金资助项目(05JJ30095)
关键词 TA-W合金 退火 再结晶 织构 Ta-W alloy annealing recrystallization textures
  • 相关文献

参考文献16

  • 1Ensinger W. Ion-beam sputter coating of tantalum tube inner walls for protection against hydrogen embrittlement[J]. Surface and Coatings Technology, 1996, 84(1/2/3): 434-438.
  • 2Cardarelli F, Taxil P, Savall A. Tantalum protective thin coating techniques for the chemical process industry: Molten salts electrocoating as a new alternative[J]. International Journal of Refractory Metals and Hard Materials, 1996, 14(5/6): 365-381.
  • 3Laurila T, Zeng K, Kivilahti J K, et al. Tantalum carbide and nitride diffusion barriers for Cu metallization[J]. Microelectronic Engineering, 2002, 60(1/2): 71-80.
  • 4Li S, Park H S, Liang M H, et al. Effects of Cu diffusion behaviors on electronic property of Cu/Ta/SiO2/Si structure[J]. Thin Solid Films, 2004, 462/463: 192-196.
  • 5Balaji T, Govindaiah R, Sharma M K, et al. Sintering and electrical properties of tantalum anodes for capacitor applications[J]. Materials Letters, 2002, 56(4): 560-563.
  • 6Delplanque J P, Cai W D, Rangel R H, et al. Spray atomization and deposition of tantalum alloys[J]. Acta Materialia, 1997, 45(12): 5233-5243.
  • 7Sandim H R Z, Martins J P, Pinto A L, et al. Recrystallization of oligocrystalline tantalum deformed by cold rolling[J]. Materials Science and Engineering, 2005, 392(1/2): 209-221.
  • 8Hosseini E, Kazeminezhad M. Dislocation structure and strength evolution of heavily deformed tantalum[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(3): 605-610.
  • 9Bunge H J. Texture analysis in materials science[M]. London: Butterworths, 1982: 10-19.
  • 10Nasser S N, Kapoor R. Deformation behavior of tantalum and a tantalum tungsten alloy[J]. International Journal of Plasticity, 2001, 17(10): 1351-1366.

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部