期刊文献+

粒子滤波算法在视频目标跟踪中的改进与运用

An Improvement and Implement of Particle Filtering Algorithm in Video Target Tracking
下载PDF
导出
摘要 为实现粒子滤波算法在视频目标跟踪领域的应用,减小算法的运算量,提高算法的适应性和鲁棒性,文中提出利用构造等价有效粒子数的概念,采用选择重采样的方式减少重采样的执行步骤,减少运算量。同时为减小算法对亮度的敏感性,提出利用HSV色彩基准代替RGB色彩基准作为目标特征,对目标进行识别。最后对改进算法进行了试验,结果表明文中所提的方法能减少算法的计算量,有效的改进算法在视频目标跟踪中的稳定性。 To apply the particle filtering algorithm in video target tracking, reduce its computation and improve the adaptive and robust ability of this algorithm, the concept of equal effective particle number (EEPN) was proposed to reduce the steps of re-sampling, thus reduce the computation. To make the algorithm be less sensitive to brightness, the HSV color model was used instead of RGB color model to identify the target. In the end of this paper, some experiments were done, and the results show that our methods are effective to reduce compu- tation and improve the steadiness of algorithm
出处 《弹箭与制导学报》 CSCD 北大核心 2012年第3期86-88,99,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 粒子滤波 目标跟踪 重采样 HSV颜色基准 particle filtering target tracking re-sampling HSV color model
  • 相关文献

参考文献6

  • 1Crisand D A. A survey of convergence results on particle filtering methods for practitioners[J].IEEE Transactions on Signal Processing,2002,(03):736-740.
  • 2姚剑敏,辛琦,郭太良.一种基于粒子滤波的自适应相关跟踪算法[J].武汉理工大学学报(信息与管理工程版),2008,30(1):6-9. 被引量:6
  • 3Carpenter J,Clifford P. An improved particle filter for nonlinear problems[J].IEEE Proceedings on Radar and Sonar Navigation,1999,(01):2-7.
  • 4Christophe Andrieu A D. Particle filtering for partially observed Gaussian state space models[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,(04):827-832.doi:10.1109/TMM.2011.2165053.
  • 5刘洋,李玉山,张大朴,邱家涛.基于动态目标建模的粒子滤波视觉跟踪算法[J].光子学报,2008,37(2):375-380. 被引量:11
  • 6Erik Cuevas D Z. Particle filter in vision tracking[J].technical report,2005,(13):1-11.

二级参考文献19

  • 1辛云宏,杨万海.IRST系统的单站机动目标跟踪算法研究[J].光子学报,2004,33(9):1131-1135. 被引量:8
  • 2CHRISTIAN H. Overview of image matching techniques [ EB/OL]. [ 2007 - 08 - 25 ]. http://phot, epfl. ch/ workshop/wks96/art_3_l, html.
  • 3GREGORY D H, PETER N B. Effciet region tracking with parametric models of geometry and illumination[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (10) : 1 125 - 1 139.
  • 4ZHONG P,YU Q Y, JIN G. Motion estimation and motion compensation based on matching technology of feature points[ J ]. J. of Optoelectronics Laser, 2004,15 (1) :73 -77.
  • 5CARPENTER J, CLIFFORD p, FEARNHEAD P. An improved particle filter for non - linear problems [ J ]. IEE Proceedings on Radar and Sonar Navigation, 1999 (46) :2-7.
  • 6DOUCET A, GORDON N, KRISHAMURTHY V. Particle filters for state estimation of jump markov linear systems[ J ]. IEEE Transactions on Signal Processing,2001 (49) :613 -624.
  • 7GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/nongaussian bayesian state estimation[ J ]. IEE Proceedings - F, 1993,40 ( 2 ) : 107 - 113.
  • 8CALWAY A D, KRUGER S A, TWEED D. Motion estimation using adaptive correlation and local directional smoothing[ C ]. Proceedings of IEEE International Conference on Image Processing. [ s. 1. ]: [ s. n. ], 1998:614 - 618.
  • 9COMANICIU D, RAMESH V, MEER P. Kernel based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5) :564 -577.
  • 10COLLINS R T, LIU Yan xi, LEORDEANU M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (10): 1631- 1643.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部