期刊文献+

伴随车检测技术应用研究 被引量:7

Research on Accompanying Cars Recognition in Practical Application
下载PDF
导出
摘要 海量动态交通流中,经常出现结伴而行的车辆.特定区域内,当结伴车辆出现的概率较大时,即可将其视为伴随车辆,这类车辆具有相互掩护和团伙作案的重大嫌疑.及早检测和识别伴随车辆,能有效降低道路交通安全系统中的危险因素,对预防和减少与道路有关的治安和刑事案件,也具有十分重要的意义.本文在车牌自动识别数据库基础上,应用数据挖掘技术,提出伴随车辆检测和识别算法,并进行了实地测试.实验结果表明:应用数据挖掘技术对伴随车辆进行分析检测,具有检测效率高、检测误差小、应用范围广的特点,完全可以满足刑侦等部门对伴随嫌疑车辆进一步排查的需要. In massive dynamic traffic flows, it is very common to see the cars moving in a queue. In some scenarios, these cars are regarded as accompanying cars and suspected of gang crime support each other when that condition occurs in a high rate. It is very important to identify the accompanying vehicles as early as possible and to reduce potential risks of road traffic system and to reduce road-related public security cases and criminal cases. Based on the automatic license plate recognition database and data mining technology, this paper proposes a set of algorithms in identifying accompanying cars and a field test is conducted. The results demonstrate the performance of the algorithm with effectiveness, low detection error, wide application and capability for further investigation.
作者 赵新勇 安实
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第3期36-40,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 '十一五'国家科技支撑计划项目(2009BAG13A06)
关键词 交通工程 车辆识别 数据挖掘 伴随车辆 traffic engineering vehicle recognition data mining accompanying cars
  • 相关文献

参考文献9

  • 1李舜酩;缪小冬.视觉车辆检测方法的研究进展及展望[J]仪器仪表学报,2009(10):1-5.
  • 2F Burgers,Dr Graham Wright. National initiatives to prevent and combat vehicle crime[A].2007.98-111.
  • 3Transport Republic of South Africa. National road safety strategy 2006 onwards[M].2006.4-43.
  • 4Brice R,Alexander W. Finding interesting things in lots of data[A].1990.2-9.
  • 5Lippmann R. An introduction to computing with neural nets[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1987,(02):4-22.
  • 6Agrawal R,Shafer J C. Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996,(06):962-969.doi:10.1109/69.553164.
  • 7Zheng Ai-hua,Ma Ji-xin,Luo Bin. A robust approach to subsequence matching[A].2009.2-4.
  • 8Agrawal R,Imielinski T,Swami A. Database mining:a performance perspective[J].IEEE Transactions on Knowledge and Data Engineering,1993,(06):914-925.
  • 9Bergroth L,Hakonen H,Raita T. A survey of longest common subsequence algorithms[A].2000.39-48.

同被引文献69

  • 1蒋盛益,李庆华,李新.数据流挖掘算法研究综述[J].计算机工程与设计,2005,26(5):1130-1132. 被引量:21
  • 2张静,阮永华,张磊,等.嫌疑车辆关联查找方法:中国,CNl01593418[P].2009-12-02.
  • 3孟小峰,丁治明.移动数据管理:概念与技术[M].北京:清华大学出版社,2009.
  • 4丁锐,孟小峰,杨楠.一种高效的移动对象相似轨迹查询方法[J].计算机科学,2003,30(10):386-403.
  • 5Jeung H, Yiu Man-lung, Zhou Xiao-fang. Discovery of convoys in trajectory databases [C]//VLDB'08, 2008: 1068-1080.
  • 6Yun Xiong, et al. Mining Peculiarity Groups in Day-by- Day Behavioral Dataset[C]//Proceeding on International Corderence of Data Mining(ICDM09 ), 2009 : 578-587.
  • 7Agrawal R, Imielinski T, Swami A. Database min- ing:a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993,5 (6) : 914- 925.
  • 8Dean J, Ghemawat S. MapReduce= Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51(1)= 107-113.
  • 9Sergio I, Eduardo M. Location-dependent query processing: Where we are and where we are heading [J]. ACM Computing Surveys, 2010, 42(3).. Article 12.
  • 10Pritchett D. BASE An acid alternative [J]. Queue, 2008, 6 (3) 48-55.

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部