期刊文献+

基于OD稳定模式的高速公路出口流量预测方法研究 被引量:3

A Freeway Entrance Volume Prediction Method Based on Traffic Origin-Destination Stability Pattern
下载PDF
导出
摘要 从高速公路车辆出入口数据中可以直接提取路网中车辆的OD信息,这些信息在一定程度上反映出车辆时空上的运行状态,更可以通过这类数据对高速公路出口流量的趋势做出合理有效地预测.本研究从真实数据出发,对交通路网中车辆OD的稳定性进行了分析,并以此为指导,将所得到的领域知识加入到常规的预测方法中,提出了一套基于OD稳定模式的高速公路出口流量预测方法.主要贡献包括:①提出了信息熵的概念,以刻画高速公路车辆OD的规律性;②提出了基于OD的稳定模式的出口流量预测方法;③在大量真实的数据上进行了实验分析. The traffic origin-destination (OD) data can be directly obtained from the freeway toll data. This information always reflects the vehicle status in temporal and spatial. And the OD information can also be used for making reasonable and effective predictions on the future trends of the freeway entrance volume. In this paper, an algorithm is proposed for predicting the freeway entrance volume based on the analysis of stability pattern of freeway traffic OD data. The contributions mainly include: ① An information entropy based method is presented for analyzing stability pattern of freeway traffic OD data ;② Based on the stability pattern, a new prediction algorithm is applied on massive freeway entrance data. ③ The experimental results show that the proposed algorithm is reasonable and feasible, the accuracy is improved as well.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第3期122-128,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(60874082) 北京市自然科学基金(4102026) 山西省交通厅科技项目(100115)
关键词 信息技术 交通流预测 OD稳定模式 高速公路出口交通流 信息熵 information technology volume prediction origin - destination stability pattern freewayentrance volume information entropy
  • 相关文献

参考文献6

  • 1Brian L Smith,Billy M Williams,R Keith Oswald. Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,(01):303-321.
  • 2Daniel Nikovski,Mehdi Zargham. Comparison of two learning networks for time series prediction[A].1996.531-536.
  • 3Yijun Sun,Dapeng Wu. Feature extraction through local learning[J].Statistical Analysis and Data Mining archive,2009,(01):34-52.
  • 4Christopher G Atkeson,Andrew W Moore,Stefan Schaal. Locally weighted learning for control[J].Artificial Intelligence Review 11,1997,(01):75-113.
  • 5Shannon,Claude E. Prediction and entropy of printed english[J].Bell System Technical Journal,1951,(02):50-64.
  • 6Nicolò Cesa-Bianchi,Gábor Lugosi. Prediction,learning,and games[M].Cambridge:Cambridge University Press,2006.

同被引文献17

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部