期刊文献+

浅谈稀疏标准化方法(Rarefaction)及其在群落多样性研究中的应用 被引量:12

RAREFACTION AND ITS APPLICATION TO THE STUDY OF DIVERSITY OF PALAEOCOMMUNITIES
原文传递
导出
摘要 古生物学常涉及多样性对比的研究。因为待比较的样本通常大小不一,所以直接对原始数据进行比较一般并不准确。稀疏标准化方法使两样本在大小不同的情况下也可进行多样性对比,因此在古生物领域应用广泛,但该方法在群落多样性研究中使用不多。在一些相关应用研究案例中,使用者通常未能考虑稀疏化方法的使用条件和局限性,其中相交的稀疏化曲线很难或不能比较的问题更是经常为人所忽视。本文针对群落研究中多样性的对比问题介绍两类稀疏化方法,并强调其使用条件及局限性。以新发现的华夏正形贝腕足动物群为例讨论该方法的使用,同时对该动物群4个采样点的稀疏化数据进行曲线拟合分析,求解曲线交点,对稀疏化数据进行外插值运算,并借此首次为稀疏化曲线交叉不可解的问题提出一个解决方案。 In the process of diversity comparison, results directly der nerally not unequal. T to compare ived from raw accurate since he rarefact diversities data comparison sample sizes are ion method makes it are ge usually possible of samples with different sizes. The method is widely used in palaeontology, but is rarely adopted in palaeocommunity research. In previous studies, the prerequisites and limitations of the rarefaction method, especially the comparison problem between intersecting curves, were often ignored. This paper is focused on the diversity comparison of palaeocommunity. It introduces two kinds of rarefaction techniques and em-phasizes the prerequisites and limitations of the method. The recently found Cathaysiorthis bra- chiopod fauna is used as an example, and using the data of 4 collections from different localities. Exponential curve fitting and extrapolation of the rarefied data is used for the first time to fix the comparison problem amongst intersected rarefaction curves.
作者 黄冰
出处 《古生物学报》 CAS CSCD 北大核心 2012年第2期200-208,共9页 Acta Palaeontologica Sinica
基金 中科院方向性项目KZCX2-EW-111 国家自然科学基金委青年基金(41002001)的资助 IGCP 591项目"早 中古生代重大事件"以及Geobiodiversity Database项目系列成果之一
关键词 物种多样性 稀疏化 曲线拟合 外插值 古群落 Cathaysiorthis, diversity, curve fitting, rarefaction, extrapolation, palaeocommunity, brachiopod fauna
  • 相关文献

参考文献3

二级参考文献185

  • 1曾庆銮,胡昌铭.江西玉山王家坝早志留世早期(Early Llandoverian)新腕足动物群的发现及其意义[J].古生物学报,1997,36(1):1-17. 被引量:6
  • 2WangYu(王钰) JinYu—gan(金玉玕) FangDa-wei(方大卫).Fossils of brachiopoda[M].Beijing:Science Press,1966.1-702.
  • 3[1]Alroy J, 2003. Global databases will yield reliable measures of global biodiversity. Paleobiology, 29(1):26-29.
  • 4[2]Alroy J, (In review). Methods for removing sampling biases from diversity curves. Paleobiology.
  • 5[3]Alroy J, Marshall C R, Bambach R K, Bezusko, K, Foote M, Fuich F T, Hansen T A, Holland S M, Ivancy L C, Jablonski D, Jacobs D K, Jones D C, Kosnik M A, Lidgard S, Low S, Miller A I, Novack-Gottshall P M, Olszewski T D, Patzkowsky M E, Raup D M, Roy K, Sepkoski J J Jr, Sommers M G, Wagner P J, Webber A, 2001. Effects of sampling standerization on estimates of Phanerozoic marine diversification. Proc. Nat. Acad. Sci. U. S. A., 98: 6261-6266.
  • 6[4]Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W, 1998. U/Pb zircon geochronogy and tempo of the end-Permian mass extinction. Science, 280:1039-1045.
  • 7[5]Chen C Z, He G X, Chen J H, Sun D L, Wang Z H, 2000. Marine Triassic. In: Nanjing Institute of Geology and Palaeontology (Ed.), Stratigraphical studies in China (1979-1999). Hefei: China University of Science and Technology Press. 241-259.
  • 8[6]Fager E W, 1972. Diversity: a sampling study. Amer. Nat., 106: 293-310.
  • 9[7]Foote M, 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology, 20:424-444.
  • 10[8]Gilinsky N L, 1991. The pace of taxonomic evolution. In: Analytical paleobiology. Gilinsky N L and Signor P W, eds., Short courses in paleontology, 4:157-174. Paleontological Society, Knoxville.

共引文献28

同被引文献203

引证文献12

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部