期刊文献+

保加利亚单人独玩牌戏的数学模型的建立及证明

The Establishment of a Model for Bulgarian Solitaire and Its Proof
下载PDF
导出
摘要 把原问题推广到任意整数下的一般形式 ,并建立了一般形式下的一种新的数学模型 ,利用模 p整数加法群的性质 ,简洁地证明了一般形式下的结论 ,同时原问题作为一般形式的特例也得到了证明 . The game Bulgarian Solitaire is a model for some problems in the theory of partition of integers and is one of the famous combinatorial problems which have not been solved. In this paper, the problem is extended to a general form and the according conclusions are laconically proved by applying the properties of Z p, and the primary problem, as a special case of the general form, is also proved.
出处 《无锡轻工大学学报(食品与生物技术)》 CSCD 2000年第3期308-311,共4页 Journal of Wuxi University of Light Industry
关键词 Ferrers图 保加利亚 单人独玩牌戏 数学模型 partition of integers group of integers modulo p Ferrers graph
  • 相关文献

参考文献3

  • 1冯克勤(译),代数学,1985年,259页
  • 2柯召,组合论,1985年,259页
  • 3马丁·加德纳,科学(中译本),1983年,12期,88页
  • 1朱尧辰.复分析、微分几何和数学物理的当代进展[J].国外科技新书评介,2007(5):1-2.
  • 2曾波,周磊.关于正整数无序不重复剖分的探讨[J].内江师范学院学报,2003,18(6):117-119. 被引量:2
  • 3邢林燕.整边梯形的计数公式[J].甘肃联合大学学报(自然科学版),2009,23(4):36-39. 被引量:1
  • 4Vladimir Valkanov,Stanimir Stoyanov,Veselina Valkanova.Virtual Education Space[J].通讯和计算机(中英文版),2016,13(2):64-76.
  • 5朱林生,王金祥,陈庆吉.单人服务排队系统的模拟结果分析[J].东北电力学院学报,1999,19(1):91-95.
  • 6张建人.运用数列方法求解错位排列问题[J].中学数学研究,2006(5):38-39.
  • 7毕晓芳,燕子宗,赵天玉.两个新的正整数分拆恒等式[J].长江大学学报(自科版)(上旬),2008,5(1):28-29. 被引量:2
  • 8王毅,赵立中.Simion猜想和对数凹性[J].数学学报(中文版),2004,47(3):449-454.
  • 9K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.NEUTRINO MASS,MIXING,AND OSCILLATIONS[J].Chinese Physics C,2014,38(9):235-258.
  • 10郭育红,张先迪.正整数的一类三分拆的应用[J].大学数学,2006,22(3):111-114. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部