期刊文献+

心电信号的小波变换处理算法及仿真 被引量:6

Processing Algorithm Based on Wavelet Transform and Simulation for ECG Signal
下载PDF
导出
摘要 为了有效去除心电信号中的干扰噪声,对信号特征点进行准确标定,采用小波变换的阈值去噪算法和时域峰值定位算法进行心电信号处理.利用bior3.7小波按照Mallat算法对ECG信号进行分解,结合软硬阈值与小波重构的算法对信号进行去噪处理,给出了小波变换与时域峰值定位结合的算法检测各特征点.仿真结果表明小波阈值算法能有效去除心电信号中的干扰噪声,保留心电信号的有效信息,基于小波变换的时域峰值定位算法能准确检测出心电信号中的特征点. For effectively eliminating noise of signal and accurately demarcating characteristic points of signal,denoising algorithm of wavelet transform with threshold and algorithm of time domain peak orientation are adopted to process ECG signal.The bior3.7 wavelet is used to decompose ECG signal according to Mallat algorithm,then algorithm for wavelet reconstruction with combination of soft and hard threshold is used to denoise,finally the algorithm of time domain peak orientation based on wavelet transform is used to demarcate feature points.Simulation results show that the noise is removed effectively,the ECG signal is retained,and feature points are accurately demarcated.
出处 《西安工业大学学报》 CAS 2012年第4期310-314,共5页 Journal of Xi’an Technological University
关键词 心电信号 小波变换 阈值去噪 特征点标定 ECG signal wavelet transform threshold denoise demarcation of feature points
  • 相关文献

参考文献7

  • 1杨福生;吕扬生.生物医学信号的处理和识别[M]天津:天津科技翻译出版公司,1997.
  • 2杨福生.小波变换的工程分析与应用[M]北京:科学出版社,1999.
  • 3张德丰.MATLAB小波分析[M]北京:机械工业出版社,2009.
  • 4宋春丽.怎样识读MIT-BIH中的心电信号[J].科技资讯,2010,8(9):27-27. 被引量:9
  • 5黄文霞,陈建华,黄博强,王付艳.ECG心搏分类的特征提取的研究[J].生物医学工程与临床,2007,11(5):344-347. 被引量:1
  • 6LI Cui-wei,ZHENG Chong-xun,TAI Chang-feng. Detection of ECG Characteristic Points Using Wavelet Transform[J].IEEE Transactions on Biomedical Engineering,1995,(01):20.
  • 7SANXENA S C,KUMAR V,HAMDE S T. Feature Extraction from ECG Signals Using Wavelet Transforms for Disease Diagnostics[J].International Journal of Systems Science,2002,(13):1073.

二级参考文献10

  • 1周群一,吕旭东,段会龙.ECG心搏模式识别[J].生物医学工程学杂志,2005,22(1):202-206. 被引量:10
  • 2www.physionet.org.
  • 3Li C,Zheng C,Tai C.Detection of ECG characteristic points using wavelet transforms[J].IEEE Trans Biomed Eng,1995,42(1):21-28.
  • 4Mallat S.Zero-crossings of a wavelet transform[J].IEEE Trans Inform Theory,1991,37:1019-1033.
  • 5Hu YH,Palreddy S,Tompkins WJ.A patient-adaptable ECG beat classifier using a mixture of experts approach[J].IEEE Trans Biomed Eng,1997,44 (9):891-900.
  • 6de Chazal P,O'Dwyer M,Reilly RB.Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J].IEEE Trans Biomed Eng,2004,51 (7):1196-1206.
  • 7de Chazal P,Celler BG,Reilly RB.Using wavelet coefficients for the classification of the electrocardiogram[C].Proceedings of World Congress on Medical Physics and Biomedical Engineering,2000.64-67.
  • 8Guler I,U'beyli ED.ECG beat classifier designed by combined neural network model[J].Pattern Recognition,2005,38 (2):199-208.
  • 9Dokur Z,Olmez T,Yazgan E.Comparison of discrete wavelet and Fourier transforms for ECG beat classification[J].Electronics Letters,1999,35(18):1502-1504.
  • 10Osowski S,Linh TH.ECG beat recognition using fuzzy hybrid neural network[J].IEEE Trans Biomed Eng,2001,48 (11):1265-1271.

共引文献8

同被引文献76

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部