摘要
从小扰动波(马赫波)的物理概念出发,导出了不依赖流体状态方程表达形式的平面二维超声速定常流的特征线方程;重新定义了以流体密度为单自变量的Prantl-Meyer函数,形成了求解平面二维超声速定常流的封闭方程组。还利用这种通用物态方程的特征线差分解法,针对滑移爆轰驱动飞板运动问题构建了爆轰产物流场内部和飞板边界特征线差分法格式。对TNT炸药和乳化炸药采用JWL状态方程和多方方程进行了对比计算。结果表明,炸药爆轰对飞板的驱动能力与状态方程表示的炸药的做功能力是一致的。
From the physical definition of perturbation propagation(Mach waves),the characteristic equations of a two-dimensional supersonic flow were deduced into the forms which were uncorrelated with the formula of EOS.Meanwhile,a new Prantl-Meyer function was expressed into a simple variable function of fluid density also.Based on characteristic difference,a solution method of the two-dimensional supersonic flow was built up.Therefore,as an application example of the solution method,the movement of the flyer plate driven by glancing detonation was analyzed.For comparison,Detonation drives of the TNT and emulsion explosives were calculated with JWL and polytropic EOSs.The numerical results show that characteristic difference solutions completely agree with the expanding works of explosive EOSs.
出处
《爆炸与冲击》
EI
CAS
CSCD
北大核心
2012年第3期237-242,共6页
Explosion and Shock Waves
基金
国家自然科学基金项目(10972051)
高等学校博士学科点专项科研基金项目(20090041110024)~~
关键词
爆炸力学
特征线方程
特征线
飞板运动
超声速流
爆轰
炸药状态方程
mechanics of explosion
characteristic equations
characteristic curve
movement of flyer plate
supersonic flow
detonation
equation of state of explosive