期刊文献+

局域态密度对表面等离激元特性影响的研究 被引量:4

The effects of local density of states on surface plasmon polaritons
原文传递
导出
摘要 表面等离激元是一种在金属与介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强和短波长等特性,在纳米光子学的研究中扮演重要角色.将表面等离激元的效应用于单元子源的制备,不但可以有效减小器件的体积,而且可以有效提高单光子的辐射和收集效率.本文根据表面等离激元的珀赛尔系数与光子态密度的关系,采用局域态密度计算的方法,分析了不同金属材料的局域态密度及珀赛尔系数的特性.通过计算比较,选择银为最佳金属材料,并在此基础上讨论了探测距离和电介质材料对局域态密度和珀赛尔系数的影响,为基于表面等离子激元的单光子源制备提供重要参数. Surface plasmon polariton (SPP) is a kind of electromagnetic oscillation coupling due to the undulation of charge intensity, which is excited at the interface between metal and dielectric. With the help of near-field enhancement, surface plasmon polariton plays an important role in nano-photonics. When the effect of SPP is used to fabricate the single photon resource, not only the volume can be miniaturized, but also the single photon radiation and collection efficiency can be effectively improved. According to the relationship between the factor of Purcell effect and the density of states, we calculate the local density of electromagnetic states(LDOS) and Purcell factor. By analyzing the local densities of electromagnetic states of different metallic materials, we find that silver is the most suitable metal. For a certain metal, the detection distance and the dielectric material also have influences on local density of electromagnetic states and Purcell factor, and they provide important parameters for the designing of single photon resource based on surface plasmon resonances.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第13期312-315,共4页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2010CB923202) 中央高校基本科研业务费(批准号BUPT2009RC0709)资助的课题~~
关键词 表面等离激元 局域态密度 珀赛尔系数 单光子源 surface plasmon polaritons, local density of electromagnetic states, Purcell factor, single photon re-source
  • 相关文献

参考文献1

二级参考文献4

共引文献8

同被引文献86

  • 1杨旭东,徐仲英,罗向东,方再历,李国华,苏荫强,葛惟昆.ZnS中Te等电子中心的时间分辨光谱研究[J].物理学报,2005,54(5):2272-2276. 被引量:1
  • 2贺亚峰,董丽芳,刘富成,范伟丽.介质阻挡放电中的局域态六边形结构[J].物理学报,2005,54(9):4236-4239. 被引量:5
  • 3马松山,徐慧,刘小良,郭爱敏.DNA分子链电子结构特性研究[J].物理学报,2006,55(6):3170-3174. 被引量:4
  • 4O’Regan B, Gratzel M 1991 Nature 353 737.
  • 5Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Gr?tzel M 2009 J. Am. Chem. Soc. 131 5930.
  • 6Gratzel M 2001 Nature 414 338.
  • 7Che H, Blaber M G, Standridge S D, DeMarco E J, Hupp J T, Ratner M A, Schatz G C 2012 J. Phys. Chem. C 116 10215.
  • 8Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner S M, Wiesner U 2010 J. Am. Chem. Soc. 133 172.
  • 9Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804.
  • 10Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部