期刊文献+

基于自洽GW方法的碳化硅准粒子能带结构计算 被引量:2

Quasiparticle band structure calculation for SiC using self-consistent GW method
原文传递
导出
摘要 在多体微扰理论的框架下,分别采用G_0W_0方法和准粒子自洽GW方法计算3C-SiC和2H-SiC的准粒子能级.由一个平均Monkhorst-Pack网格点上的准粒子能级和准粒子波函数出发,结合最局域Wannier函数插值,得到3C-SiC和2H-SiC的自洽准粒子能带结构.3C-SiC的价带顶在Γ点,导带底在X点.DFT-LDA,G_0W_0和准粒子自洽GW给出的3C-SiC间接禁带宽度分别为1.30eV,2.23 eV和2.88eV 2H-SiC价带顶在Γ点,导带底在K点.采用DFT-LDA,G_0W_0和准粒子自洽GW方法得到的间接禁带宽度分别为2.12 eV,3.12 eV和3.75 eV.计算基于赝势方法,对于3C-SiC和2H-SiC的准粒子自洽GW计算给出的禁带宽度均比实验值略大. Quasiparticle band structures of 3C-SiC and 2H-SiC were calculated using ab initio many body perturbation theory with GW approximation. Quasiparticle energies along high symmetry lines in the first Brillouin zone were evaluated using quasiparitcle selfconsistent GW (QPscGW) method and the Maximally-localized Wannier Function interpolation. Both 3C-SiC and 2H-SiC have an indirect band gap with valence band maximum locating at F point. The conduction band maximum of 3C-SiC is at X point. As a comparison, band gaps of 3C-SiC calculated by DFT-LDA, one-shot GoW0 and QPscGW are 1.30 eV, 2.23 eV and 2.88 eV respectively. The conduction band minimum of 2H-SiC locates at K point with a band gap of 2.12 eV, 3.12 eV and 3.75 eV predicted by DFTLDA, one-shot GoW0 and QPscGW respectively. Lattice parameters calculated by DFT-LDA were used in this work. The QPscGW calculations are based on pseudopotential method, predicting slightly larger bandgaps for both 3C-SiC and 2H-SiC comparing with experiments.
作者 高尚鹏 祝桐
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第13期381-386,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CB606403) 国家自然科学基金(批准号:10804018)资助的课题~~
关键词 GW方法 最局域Wannier函数 SIC 能带结构 GW method, Maximally-localized Wannier Function, Silicon carbide, band structure
  • 相关文献

参考文献32

  • 1Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402.
  • 2Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169.
  • 3Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390.
  • 4Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847.
  • 5Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109.
  • 6Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109.
  • 7Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685.
  • 8Holm B, Barth U V 1998 Phys. Rev. B 57 2108.
  • 9Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221.
  • 10Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662.

同被引文献38

  • 1吕梦雅,陈洲文,李立新,刘日平,王文魁.3C-SiC高压相变的理论研究[J].物理学报,2006,55(7):3576-3580. 被引量:10
  • 2徐彭寿,谢长坤,潘海斌,徐法强.3C-SiC的能带结构和光学函数的第一性原理计算[J].中国科学技术大学学报,2006,36(9):1001-1004. 被引量:4
  • 3Van Vechten J A,Tsu R,Saris F W. Nonthermal pulsedlaser annealing of Si:plasma annealing[J]. Physics LettersA,1979,74(6):422-426.
  • 4Shank C V,Yen R,Hirlimann C. Time-resolved reflectivitymeasurements of femtosecond-optical-pulse-induced phasetransitions in silicon[J]. Physical Review Letters,1983,50(2):454-457.
  • 5Saeta P,Wang J K,Siegal Y,et al. Ultrafast electronic disorderingduring femtosecond laser melting of GaAs[J].Physical Review Letters,1991,67(8):1023-1026.
  • 6Larsson J,Heimann P A,Lindenberg A M,et al. Ultrafaststructural changes measured by time-resolved X-ray diffraction[J]. Applied Physics A,1998,66(6):587-591.
  • 7Uteza O P,Gamaly E G,Rode A V,et al. Gallium transformationunder femtosecond laser excitation:Phase coexistenceand incomplete melting [J]. Physical Review B,2004,70(5):054108.
  • 8Silvestrelli P L,Alavi A,Parrinello M,et al. Structural,dynamical,electronic,and bonding properties of laser-heatedsilicon:An ab initio molecular-dynamics study[J]. PhysicalReview B,1997,56(8):3806-3812.
  • 9Silvestrelli P L,Alavi A,Parrinello M,et al. Ab initio moleculardynamics simulation of laser melting of silicon[J].Physical Review Letters,1996,77(7):3149-3152.
  • 10Recoules V,Clérouin J,Zérah G,et al. Effect of intense laserirradiation on the lattice stability of semiconductors andmetals[J]. Physical Review Letters,2006,96(5):055503.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部