期刊文献+

储罐底板腐蚀状态的人工神经网络智能评价方法 被引量:3

Artificial Neural Network Intelligent Evaluation Method of Tank Bottom Corrosion Status
下载PDF
导出
摘要 根据储罐底板在线检测的声发射信息和外观检查信息,确定与储罐底板腐蚀状态相关的表征因素,应用人工神经网络智能评价方法,分别建立基于外观检查信息、基于声发射信息和基于在线检测信息的储罐底板腐蚀状态评价模型。通过对测试样本的评价,对比声发射检测评价结果,其中基于在线检测信息的储罐底板腐蚀状态评价模型的准确率为94%,该模型能够对储罐底板腐蚀状态进行准确的评价,实现储罐底板声发射在线检测评价的智能化。 According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status were confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information and online testing information were established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information was 94%. The evaluation model could evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.
出处 《无损检测》 2012年第6期5-7,11,共4页 Nondestructive Testing
基金 黑龙江省教育厅科学技术研究项目(12511008)
关键词 储罐底板腐蚀 声发射在线检测 外观检查因素 人工神经网络 Tank bottom corrosion Acoustic emission online detection Appearance inspection factors Artificial neural network
  • 相关文献

参考文献6

二级参考文献15

共引文献27

同被引文献15

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部