摘要
Characterization of disease models of neurodegenerative disorders requires a systematic and comprehensive phenotyping in a highly standardized manner. Therefore, automated high-resolution behavior test systems such as the homecage based LabMaster system are of particular interest. We demonstrate the power of the automated LabMaster system by discovering previously unrecognized features of a recently characterized atxn3 mutant mouse model. This model provided neurological symptoms including gait ataxia, tremor, weight loss and premature death at the age of 12 months usually detectable just 2 weeks before the mice died. Moreover, using the LabMaster system we were able to detect hypoactivity in presymptomatic mutant mice in the dark as well as light phase. Additionally, we analyzed inflammation, immunological and hematological parameters, which indicated a reduced immune defense in phenotypic mice. Here we demonstrate that a detailed characterization even of organ systems that are usually not affected in SCA3 is important for further studies of pathogenesis and required for the preclinical therapeutic studies.
Characterization of disease models of neurodegenerative disorders requires a systematic and comprehensive phenotyping in a highly standardized manner. Therefore, automated high-resolution behavior test systems such as the homecage based LabMaster system are of particular interest. We demonstrate the power of the automated LabMaster system by discovering previously unrecognized features of a recently characterized atxn3 mutant mouse model. This model provided neurological symptoms including gait ataxia, tremor, weight loss and premature death at the age of 12 months usually detectable just 2 weeks before the mice died. Moreover, using the LabMaster system we were able to detect hypoactivity in presymptomatic mutant mice in the dark as well as light phase. Additionally, we analyzed inflammation, immunological and hematological parameters, which indicated a reduced immune defense in phenotypic mice. Here we demonstrate that a detailed characterization even of organ systems that are usually not affected in SCA3 is important for further studies of pathogenesis and required for the preclinical therapeutic studies.
基金
supported by the European Union to OR(6th frame work programme.EuroSCA)