期刊文献+

NNMDS CODES

NNMDS CODES
原文传递
导出
摘要 C is an [n, k, d]q linear code over Fq. And s(C) = n + 1 - k - d is the Singleton defect of C. An MDS code C with s(C) = 0 has been studied extensively. Recently, a near-MDS code C with s(C) = s(C⊥) = 1 is studied by many scholars, where C⊥ denotes the dual code of C. This paper concentrates on the linear code C with s(C) = s(C⊥) = 2, and the author calls it an NNMDS code. A series of iff conditions of NNMDS codes are presented. And the author gives an upper bound on length of NNMDS codes. In the last, some examples of NNMDS are given.
作者 Hongxi TONG
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第3期617-624,共8页 系统科学与复杂性学报(英文版)
基金 supported by Key Disciplines of Shanghai Municipality under Grant No.S30104
  • 相关文献

参考文献9

  • 1S. Ling and C. P. Xing, Coding Theory, A First Course, Cambridge University Press, 2004.
  • 2F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1977.
  • 3V. S. Pless, W. C. Huffman, and R. A. Brualdi, An introduction to algebraic codes, Handbook of Coding Theory, Volume I (ed. by V. S. Pless, W. C. Huffman), Elsevier, Amsterdam/Lausanne/New York/Oxford/Shannon/Singapore/Tokyo, 1998.
  • 4S. M. Dodunekov and I. N. Landgev, On near-MDS codes, J. Geom. 19951 54: 30-43.
  • 5S. Henning, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  • 6S. M. Dodunekov and I. N. Landgev, Near-MDS codes over some small fields, Discr. Math., 2000, 213:55 -65.
  • 7S. M. Dodunekov and I. N. Landgev, Near-MDS codes over some small fields, Discr. Math., 2000, 213:55 65.
  • 8M. A. De Boer, Almost MDS codes, Des. Codes Cryptogr., 1996, 9:143 -155.
  • 9V. K. Wei, Generelized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 1991 37:1412- 1418.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部