摘要
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 10805013 and 51077035)
the Funds for Distinguished Young Scientists of Hebei University, China (Grant No. A2012201045)
the Key Project of Ministry of Education of China (Grant No. 210014)
the Natural Science Foundation of Hebei province, China (Grant Nos. A2009000149 and A2011201132)
the Outstanding Youth Project of Education Department of China (Grant No. Y2011120)