摘要
A new analytical model for the surface electric field distribution and breakdown voltage of the silicon oil insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented. Based on the two-dimensional Laplace solution and Poisson solution, the model considers the influence of structure parameters such as the doping concentration of the drift region, and the depth and width of the trench on the surface electric field. Further, a simple analytical expression of the breakdown voltage is obtained, which offers an effective way to gain an optimal high voltage. All the analytical results are in good agreement with the simulation results.
A new analytical model for the surface electric field distribution and breakdown voltage of the silicon oil insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented. Based on the two-dimensional Laplace solution and Poisson solution, the model considers the influence of structure parameters such as the doping concentration of the drift region, and the depth and width of the trench on the surface electric field. Further, a simple analytical expression of the breakdown voltage is obtained, which offers an effective way to gain an optimal high voltage. All the analytical results are in good agreement with the simulation results.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 60976060)
the National Key Laboratory of Analogue Integrated Circuit, China (Grant No. 9140C090304110C0905)