期刊文献+

球对称静态荷电理想流体爱因斯坦方程的严格解

Exact Solutions of Einstein Equations for Static Charged Perfect Fluid with Spherical Symmetry
下载PDF
导出
摘要 获得球对称静态荷电理想流体爱因斯坦方程的严格解 ,此解在边界上与Reissner Nordstro··m度规相衔接 ,在球内 ,度规是正则的 ,质量密度、电荷密度、压强是有限的 .作为特例 ,此解包含了以前由Wang(1 987) An exact solution of the Einstein equations is obtained for static charged perfect fluid with spherical symmetry. This solution can match with the Reissner Nordstro·· m metric at the boundary. The metric is regular, the mass density, the charge density and the pressure are finite. The solution includes as special cases the results given previously by Wang(1987).
出处 《长沙水电师院学报(自然科学版)》 2000年第2期69-71,共3页
关键词 理想流体 爱因斯坦方程 严格解 球对称静态荷电 a perfect fluid Einstein equations exact solution
  • 相关文献

参考文献5

  • 1[1]Kyle C F, Martin A W. Self-energy considerations in general relativity and the exact fields of charged and mass distributions[ J ], Nuovo Cimento, 1967, 50(4) :583 - 603.
  • 2[2]Wilson S J. Exact solution of a static charged sphere in general relativity[J]. Canad J Phys, 1969,47(10):2 401 - 2 404.
  • 3[3]Krori K D, Barua J J. A singularity-free solution for a charged fluid sphere in general relativity[J ]. Phys A Math Gen, 1975,8(4): 508-511.
  • 4厉江帆.广义相对论中静态荷电理想流体球的内解[J].数学物理学报(A辑),1991,11(4):467-472. 被引量:2
  • 5[5]Wang X S. Exact solution of a static charged sphere in general relativity[J]. (Sen Rel Gray, 1987, 19(7):729 - 737.

二级参考文献2

  • 1Wang Xingxiang,Gen Rel Grav,1987年,19卷,7期,729页
  • 2Zhu Shichang,Fen Rel Grav,1983年,15卷,4期,293页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部