Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems
Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems
摘要
Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.
参考文献20
-
1Cesari, L., A boundary-value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Squola Norm. Sup. Pisa, 4(1), 1974, 311-358.
-
2Cirin, M., Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J., 17, 1970, 193 209.
-
3Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Com- pany, Inc., New York, Toronto, London, 1955.
-
4Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. II, Wiley, New York, 1962.
-
5Courant, R, and Lax, P., Cauchy's problem for nonlinear hyperbolic differential equations in two indepen- dent variables, Annali di matmatica, 40, 1955, 161-166.
-
6Douglis, A., Some existence theorems for hyperbolic systems of partial differential equations in two inde- pendent variables, Comm. Pure Appl. Math., 5, 1952, 119-154.
-
7Donglis, A., The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math., 14, 1961, 267-284.
-
8Evans L. C. and Cariepy, R. F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
-
9Hartman, P. and Wintner, A., On hyperbolic partial differential equations, Amer. J. Math., 74, 1952, 834-864.
-
10Hoff, D., Locally Lipschitz solutions of a single conservation law in several space variables, J. Diff. Eq., 42(2), 1981, 215 -233.
-
1黄维章.对角型拟线性双曲系统在大初值下整体光滑解的存在性[J].应用数学学报,1991,14(2):229-233. 被引量:1
-
2韦真,杨永富.2×2线性退化系统初边值问题的显式解(英文)[J].复旦学报(自然科学版),2017,56(1):34-39.
-
3罗李平,罗振国,曾云辉.一类带阻尼项的拟线性双曲系统的(全)振动性问题[J].山东大学学报(理学版),2016,51(6):73-77.
-
4祁爱琴,司建国.DISCUSSION ON THE CONTINUOUS SOLUTIONS OF A FUNCTIONALE QUATION[J].Annals of Differential Equations,2000,16(1):56-61.
-
5J.CABALLERO,B.LóPEZ,K.SADARANGANI.Existence of Nondecreasing and Continuous Solutions of an Integral Equation with Linear Modification of the Argument[J].Acta Mathematica Sinica,English Series,2007,23(9):1719-1728.
-
6YanPing.GLOBAL EXISTENCE OF CLASSICAL SOLUTION WITH SMALL INITIAL TOTAL VARIATION FOR QUASILINEAR LINEARLY DEGENERATE HYPERBOLIC SYSTEMS[J].Journal of Partial Differential Equations,2003,16(4):321-334. 被引量:1
-
7S.L. Yang(Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China).δ-WAVE FOR 1-D AND 2-D HYPERBOLIC SYSTEMS[J].Journal of Computational Mathematics,1996,14(3):256-262. 被引量:1
-
8Yanzhao LI,Cunming LIU.Asymptotic Stability of Equilibrium State to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems[J].Chinese Annals of Mathematics,Series B,2015,36(3):323-344.
-
9薛晓琳,刘存明.拟线性双曲型方程组Cauchy问题行波解的稳定性[J].数学学报(中文版),2016,59(6):745-760.
-
10李书敏.CAUCHY PROBLEM FOR GENERAL FIRST ORDER INHOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEMS[J].Journal of Partial Differential Equations,2002,15(1):46-68. 被引量:4