期刊文献+

The Teodorescu Operator in Clifford Analysis 被引量:3

The Teodorescu Operator in Clifford Analysis
原文传递
导出
摘要 Euclidean Clifford analysis is a higher dimensional function theory centred around monogenic functions, i.e., null solutions to a first order vector valued rotation in- variant differential operator called the Dirac operator. More recently, Hermitian Clifford analysis has emerged as a new branch, offering yet a refinement of the Euclidean case; it focuses on the simultaneous null solutions, called Hermitian monogenic functions, to two Hermitian Dirac operators and which are invariant under the action of the unitary group. In Euclidean Clifford analysis, the Teodorescu operator is the right inverse of the Dirac operator __0. In this paper, Teodorescu operators for the Hermitian Dirac operators c9~_ and 0_~, are constructed. Moreover, the structure of the Euclidean and Hermitian Teodor- escu operators is revealed by analyzing the more subtle behaviour of their components. Finally, the obtained inversion relations are still refined for the differential operators is- suing from the Euclidean and Hermitian Dirac operators by splitting the Clifford algebra product into its dot and wedge parts. Their relationship with several complex variables theory is discussed.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第4期625-640,共16页 数学年刊(B辑英文版)
关键词 Clifford analysis Teodorescu operator Dirac operator Clifford分析 Clifford代数 Dirac算子 Hermitian 欧几里德 微分算子 埃尔米特 运营商
  • 相关文献

参考文献3

二级参考文献18

  • 1F.BRACKX,H.DE SCHEPPER.HILBERT-DIRAC OPERATORS IN CLIFFORD ANALYSIS[J].Chinese Annals of Mathematics,Series B,2005,26(1):1-14. 被引量:1
  • 2Brackx, F., Delanghe, R. & Sommen, F., Clifford analysis, Pitman Publ., 1982.
  • 3Brackx, F., Delanghe, R. & Sommen, F., Spherical means and distributions in Clifford analysis, Proceedings of the Macao Conference on Clifford Analysis, Birkhauser, 2002.
  • 4Delanghe, R., Some remarks on the principal value kernel, Complex Variables: Theory and Application,47(2002), 653-662.
  • 5Delanghe, R., Sommen, F. & Soucek, V., Clifford algebra and spinor-valued functions, Kluwer Academic Publ., 1992.
  • 6Gelfand, I. M. & Shilov, G. E., Generalized functions, Vol. 1, Academic Press, 1964.
  • 7Gilbert, J. & Murray, M., Clifford algebra and Dirac operators in harmonic analysis, Cambridge Univ.Press, 1991.
  • 8Horvath, J., Singular integral operators and spherical harmonics, Trans. Amer. Math. Soc., 82(1950),52-63.
  • 9Schwartz, L., Theorie des distributions, Hermann, 1966.
  • 10Stein, E. & WeiB, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971.

共引文献5

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部