期刊文献+

基于稳健3D-SKR的序列图像超分辨率重建 被引量:1

Super-resolution of image sequences based on robust 3D-SKR
下载PDF
导出
摘要 考虑目前无需亚像素精度配准的三维导向核回归(3D-SKR)超分辨率重建算法对图像中的离群点高度敏感的问题,引入了稳健估计中的Huber函数,并结合中值滤波,提出了一种稳健的三维导向核回归超分辨率重建算法。该算法将图像中残差大于Huber尺度参数的点视为离群点,利用三维中值滤波对其进行隐藏,然后再使用Huber函数进行超分辨率重建。实验证明,该算法在保持了原有算法的良好特性的基础上,有效地消除了离群点对重建结果的影响。 Considering the issue of the 3D-SKR super resolution reconstruction which doesn't need sub-pixel registration being highly sensitive to the outliners in the image, we proposed a robust scheme of 3D-SKR super resolution reconstruction by introducing the Huber function in M-estimators integrated with the median filtering. This scheme regards the points whose residual error is greater than the scale parameter of Huber as the outliners, which would be concealed by 3d median filtering, and then the super resolution reconstruction is carried out with Huber function. Experiment results proved that improved algorithm can remove the influence caused by the outliners with the maintaining of the good performance of the original algorithm.
出处 《电子测量技术》 2012年第6期84-87,共4页 Electronic Measurement Technology
关键词 超分辨率 三维导向核回归 序列图像 Huber函数 中值滤波 super-resolution 3d-steering kernel regression(3D-SKR) image sequences Huber function median filtering
  • 相关文献

参考文献9

  • 1FARSIU S, ROBINSON D, ELAD M, et al. Fast and robust multi-frame super-resolution [J]. IEEE Transaction on Image Processing, 2004,13 : 1327.
  • 2刘涛.混合MAP-POCS算法在压缩视频中的应用[J].国外电子测量技术,2008,27(3):65-68. 被引量:5
  • 3杨欣,费树岷,周大可.基于MAP的自适应图像配准及超分辨率重建[J].仪器仪表学报,2011,32(8):1771-1775. 被引量:19
  • 4解大鹏,王培康.基于双正则项的图像超分辨率重建算法[J].电子测量技术,2011,34(2):42-44. 被引量:5
  • 5PICKUP C L, CAPEL P D, STEPHEN J R, et al. Overcoming registration uncertainty in image super- resolution: maximize or marginalize [J]. EURASIP Journal on Advances in Signal Processing, 2007 (2) ..20.
  • 6HIROYUKI T,PEYMAN M, MATAN P, et al. Super- resolution without explicit sub-pixel motion estimation [J]. IEEE Transaction on Image Processing, 2009, 18 (9) : 1958-1975.
  • 7ROUSSEEUW P J, HUBERT M. Robust statistics for outlier detection [J ]. WIREs Data MiningKnowledge Discovery,2011(1):73-79.
  • 8TAKEDA H, FARSIU S, MILANFAR P. Kernel regression for image processing and reconstruction [J]. IEEE Transaction on Image Process, 2007, 16 (2) ..349-366.
  • 9丁静.基于M-估计的正则化超分辨率重建算法研究[D].合肥:中国科学技术大学,2011:22.

二级参考文献35

  • 1TSAI R Y, HUANG T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984(1) : 317-339.
  • 2FARSIU S,ROBINSON D. Fast and robust multiframe super-resolutionl[J]. IEEE Trans, Image Process,2004,13(10) : 1327-1344.
  • 3PATANAVIJIT V,JITAPUNKUL S. A lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with lorentzian- tikhonov regularization [J]. EURASIP Journal on Advances in Signal Processing,2007: 1-21.
  • 4PARK S C, PARK M K, KANG M G. Super resolution image reconstruction: a technical review [J]. IEEE Signal Processing Magazine,2003,20(5) :21-35.
  • 5VEGA M,MOLINA R,KATSAGGELOS A K. A Bayesian super-resolution approach to demosaicing of blurred images [J]. EURASIP Journal on Applied Signal Processing, 2006 (10) : 1-12.
  • 6ZIBETTI M,BAZAN F, MAYER J. Estimation of the parameters in regularized simultaneous superresolution[J]. Pattern Recognition Letters. 2011,32 (1) :69-78.
  • 7BLACK M J,RANGARAJAN A. On the unification of line processes,outlie rejection and robust statistics with applications in early vision [J]. International Journal of Computer Vision, 1996,19(1) : 57-92.
  • 8PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview [ J ]. IEEE Transaction on Signal Processing, 2003, 20 (5) : 21-36.
  • 9ELAD M, FEUER A. Restoration of a single super resolution image from several blurred, noisy, and under sampled measured images [ J ]. IEEE Transaction on Image Processing, 1997,6(12) : 1646-1658.
  • 10SCHULTZ R R, STEVENSON R L. Extraction of high- resolution frames from video sequences[J].IEEE Transaction on Image Processing, 1996,5 (6) : 996-1011.

共引文献26

同被引文献19

  • 1OZDEMIR S, XIAO Y. FTDA: Outlier detection-based fault- tolerant data aggregation for wireless sensor net- works [ J ]. Security and Communication Networks, 2013, 6(6) : 702-710.
  • 2BRANCH J W, GIANNELLA C, SZYMANSKI B, et al. In-network outlier detection in wireless sensor networks [ J]. Knowledge and information systems, 2013, 34( 1 ) : 23 -54.
  • 3GHORBEL O, JMAL M W, AYEDI W, et al. An over- view of outlier detection technique developed for wireless sensor networks [ C ]. Systems, Signals & Devices (SSD), 2013 10th International Multi-Conference on. IEEE, 2013: 1-6.
  • 4HAUSKRECHT M, BATAL I, VALKO M, et al. Outlier detection for patient monitoring and alerting [ J ]. Journal of Biomedical Informatics, 2013, 46( 1 ) : 47-55.
  • 5VIDMAR G, BLAGUS R. Outlier detection for heahhcare quality monitoring - A comparison of four approaches to over-dispersed Proportions [ J ]. Quality and Reliability Engineering International, 2014, 30 (3) : 347-362.
  • 6BREUNIG M M, KRIEGEL H P, Ng R T, et al. LOF: identifying density-based local outliers [ C ]. ACM Sigmod Record. ACM, 2000, 29(2): 93-104.
  • 7KELARESTAGHI M, HASHEMI S. I-IncLOF: Improved incremental local outlier detection for data streams [ C ]. AISP 2012,2012.
  • 8GOLDSTEIN M. FastLOF: An expectation-maximization based local outlier detection algorithm [ C ]. Pattern Rec- ognition (ICPR), 2012 21st International Conference on. IEEE, 2012: 2282-2285.
  • 9GAO L, YU S Y, LUO Y P, et al. MLOD: Multi-granu- larity local outlier detection [ C ]. Granular Computing, 2009, GRC'09. IEEE International Conference on. IEEE, 2009: 171-175.
  • 10GAO J, HU W, LI W, et al. Local outlier detection based on kernel regression [ C ]. Pattern Recognition ( ICPR), 2010 20th International Conference on. IEEE,2010: 585-588.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部