摘要
SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles.
SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm, and consist of nanosized SnO2 particles with a mean diameter of about 15 nm. Electrochemical measurements indicate that the SnO2 hollow spheres exhibit im- proved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries. The enhanced performance may be attributed to the spherical and hollow structure, as well as the building blocks of SnO2 nanoparticles.
基金
supported by the National Natural Science Foundation of China (21121063)
the National Key Project on Basic Research(2011CB935700 and 2009CB930400)
the Chinese Academy of Sciences