摘要
Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.
Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.