摘要
The key word for the design process of the photovoltaic tracking systems is the energetic efficiency. Using the tracking system, the photovoltaic panel follows the sun and increases the collected energy, but the driving motors consume a part of this energy. In these terms, the optimization of the tracking systems became an important challenge in the modem research and technology. In this paper, a strategy for the dynamic optimization of the photovoltaic tracking systems is presented. The main task in optimization is to maximize the energetic gain by increasing the incoming solar radiation and minimizing the energy consumption for tracking. This strategy is possible by developing the virtual prototype of the tracking system, which is a control loop composed by the multi-body mechanical model connected with the dynamic model of the actuators and with the controller model. In this way, it is possible to optimize the tracking mechanism, choose the appropriate actuators, and design the optimal controller.