摘要
For a healthy and productive life, good steep is essential, which has prompted studies on how comfortable sleep can be achieved. Understanding the relationship between thermal environment and physiological responses such as skin and core temperatures, and psychological responses such as thermal and sleep sensations is necessary to identify the most suitable thermal environment for steep. As an energy-saving and practical method of creating the most appropriate thermal environment for sleep, local heating or cooling is sometimes used, which takes into consideration the differences in local thermal responses. We performed this study to identify the most effective thermal environment for inducing comfortable sleep by identifying the physiological responses during sleep on the basis of sleep experiments conducted under local body heating or cooling conditions. We also used a human thermal model, which can be applied for predicting physiological responses. In the experiments, the feet of the subject were the primary area to be heated or cooled, which was achieved by installing a flexible duct with an outlet placed close to the subject's feet and inlet connected to an air conditioner. Differences in the fluctuation of body temperature and sleep stage depended on the airflow direction from the duct to the feet. When air was blown downward towards the feet, body temperature decreased and the subject was able to sleep well. Measured skin and core temperatures were calculated using an improved 27-node human thermal model that was originally developed for use in subjects who are not in steep. Although skin
For a healthy and productive life, good steep is essential, which has prompted studies on how comfortable sleep can be achieved. Understanding the relationship between thermal environment and physiological responses such as skin and core temperatures, and psychological responses such as thermal and sleep sensations is necessary to identify the most suitable thermal environment for steep. As an energy-saving and practical method of creating the most appropriate thermal environment for sleep, local heating or cooling is sometimes used, which takes into consideration the differences in local thermal responses. We performed this study to identify the most effective thermal environment for inducing comfortable sleep by identifying the physiological responses during sleep on the basis of sleep experiments conducted under local body heating or cooling conditions. We also used a human thermal model, which can be applied for predicting physiological responses. In the experiments, the feet of the subject were the primary area to be heated or cooled, which was achieved by installing a flexible duct with an outlet placed close to the subject's feet and inlet connected to an air conditioner. Differences in the fluctuation of body temperature and sleep stage depended on the airflow direction from the duct to the feet. When air was blown downward towards the feet, body temperature decreased and the subject was able to sleep well. Measured skin and core temperatures were calculated using an improved 27-node human thermal model that was originally developed for use in subjects who are not in steep. Although skin