期刊文献+

The neurobiology of sensing respiratory gases for the control of animal behavior

The neurobiology of sensing respiratory gases for the control of animal behavior
原文传递
导出
摘要 Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O2/CO2 to trigger appropriate behaviors and maintain homeostasis of internal O2/CO2. Although different animal species show different behavioral responses to O2/CO2, some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors. Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O2/CO2 to trigger appropriate behaviors and maintain homeostasis of internal O2/CO2. Although different animal species show different behavioral responses to O2/CO2, some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.
出处 《Frontiers in Biology》 CAS CSCD 2012年第3期246-253,共8页 生物学前沿(英文版)
关键词 oxygen carbon dioxide C. elegans DROSOPHILA respiratory gases animal behaviors oxygen, carbon dioxide, C. elegans, Drosophila, respiratory gases, animal behaviors
  • 相关文献

参考文献64

  • 1Anderson J F,Ultsch G R. Respiratory gas concentrations in the microhabitats of some Florida arthropods[J].Comp Biochem Physiol Part A Physiol,1987,(03):585-588.doi:10.1016/0300-9629(87)90086-7.
  • 2Bargmann C I,Hartwieg E,Horvitz H R. Odorant-selective genes and neurons mediate olfaction in C.elegans[J].Cell,1993,(03):515-527.doi:10.1016/0092-8674(93)80053-H.
  • 3Bickler P E,Donohoe P H. Adaptive responses of vertebrate neurons to hypoxia[J].Journal of Experimental Biology,2002,(Pt 23):3579-3586.
  • 4Brandt J P,Aziz-Zaman S,Juozaityte V,Martinez-Velazquez L A,Petersen J G,Pocock R,Ringstad N. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity[J].PLoS ONE,2012.
  • 5Bretscher A J,Busch K E,de Bono M. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans[J].Proceedings of the National Academy of Sciences(USA),2008,(23):8044-8049.doi:10.1073/pnas.0707607105.
  • 6Chandrashekar J,Yarmolinsky D,yon Buchholtz L,Oka Y,Sly W,Ryba N J,Zuker C S. The taste of carbonation[J].Science,2009,(5951):443-445.doi:10.1126/science.1174601.
  • 7Chang A J,Bargmann C I. Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans[J].Proceedings of the National Academy of Sciences(USA),2008,(20):7321-7326.doi:10.1073/pnas.0802164105.
  • 8Ehrismann D,Flashman E,Genn D N,Mathioudakis N,Hewitson K S,Ratcliffe P J,Schofiel. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay[J].Biochemical Journal,2007,(01):227-234.
  • 9Epstein A C,Gleadle J M,McNeill L A,Hewitson K S,O'Rourke J,Mole D R,Mukhetji M,Metzen. C.elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J].Cell,2001,(01):43-54.
  • 10Félix M A,Braendle C. The natural history of Caenorhabditis elegans[J].Current Biology,2010,(22):R965-R969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部