期刊文献+

原生生物质体(叶绿体)的多样性及其形成原因 被引量:2

Diversity of protist plastids (chloroplasts) and its causation analyses
原文传递
导出
摘要 真核生物的叶绿体一般具有一定的典型的结构和功能。然而,在单细胞的原生生物中却不断发现结构与功能均与典型叶绿体明显不同的质体(叶绿体),如不具核形体的多层膜质体、具核形体的多层膜质体、具有最小基因组的质体等,表现出质体的丰富多样性。本文概要地介绍了单细胞原生生物中这些非典型的质体,并对形成这种多样性的主要原因,即这些生物的质体在进化过程中发生的一次、二次和三次内共生事件进行了分析探讨。 Eukaryotic chloroplasts normally possess typical structure and function. However, the plastids (chloroplasts) of unicellular protists have various atypical structures and functions, such as multi-membrane-bound plastids without nucelomorph, multi-membranebound plastids with nucleomorph and plastids with the smallest genome, which revealing the rich diversity of plastids. Now we review the diversity of plastids in diverse protists, and explore the underlying reasons driving the diversities, the primary, secondary and tertiary endosymbiosis of plastids.
作者 张玉娟 谭欢
出处 《生命的化学》 CAS CSCD 2012年第3期272-276,共5页 Chemistry of Life
基金 遗传资源与进化国家重点实验室开放课题(GREKF11-09) 重庆师范大学博士启动基金项目(11XLB001)资助
关键词 原生生物 内共生 顶质体 核形体 protists endosymbiosis apicoplast nucleomorph
  • 相关文献

参考文献34

  • 1Weber AP et al. From endosymbiosis to synthetic photosynthetic life. Plant Physiol, 2010, 154:593-597.
  • 2李洁莉.线粒体和叶绿体的起源与进化[J].阜阳师范学院学报(自然科学版),1996,13(2):54-56. 被引量:3
  • 3Agrawal Set al. More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist, 2010, 161:672-687.
  • 4McFadden GI. The apicoplast. Protoplasma, 2010, 248:641-650.
  • 5Sato S. The apicomplexan plastid and its evolution. Cell Mol Life Sci, 2011, 68:1285-1296.
  • 6Moore CE et al. Nucleomorph genomes. Annu Rev Genet, 2009, 43:251-264.
  • 7于惠敏,解相林.叶绿体的“内共生”与“基因转移”现象[J].生物学通报,2007,42(10):17-19. 被引量:6
  • 8Busse I et al. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int J Syst Evol Microbiol, 2003, 53: 617-624.
  • 9孙桂玲等.腐生眼虫Astasia longa的质体仅仅是一个“叶绿体残迹”吗.中国动物学会原生动物学分会第十二次学术讨论会论文摘要汇编,2003,12:23.
  • 10Fichera ME et al. A plastid organelle as a drug target in apicomplexan parasites. Nature, 1997, 390:407-409.

二级参考文献40

  • 1Wilson R J M,Denny P W,Preiser P R,et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum[J].J Mol Biol, 1996,261(2) :155-172.
  • 2Kohler S,Delwiche C F,Denny P W,et al. A plastid of probable green algal origin in apicomplexan parasites [J]. Science,1997,275(5305): 1485-1489.
  • 3Waller R F, McFadden G I. The apicoplast: A review of the derived plastid of apicomplexan parasites[J]. Curr Issues Mol Bio1,2005,7(1):57-79.
  • 4Delwiche C F, Palmer J D. The origin of plastids and their spread via secondary endosymbiosis[J].Pl Syst Evol, 1997,11(Suppl) : 51-86.
  • 5McFadden G I,Waller R F. Plastids in parasites of humans[J]. Bio Essays, 1997,19(11) : 1033-1040.
  • 6Cai X,Fuller A L,McDougald L R,et al. Apicoplast genome of the coccidian Eimeria tenella [J].Gene, 2003,321 : 39-46.
  • 7Zhu G, Marchewka M J, Keithly J S. Cryptosporidium parvum appears to lack a plastid genome[J]. Microbiology,2000, 146(2):315-321.
  • 8McFadden G I, Roos D S. Apicomplexan plastids as drug targets[J]. Trends Microbiol, 1999,7(8) : 328-333.
  • 9Hopkins J, Fowler R, Krishna S, et al. The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis[J]. Protist, 1999,150(3) :283-295.
  • 10Waller R F, Reed M B,Cowman A F,et al. Protein trafficking to the plastid of Plasmodium falclparum is via the secretory pathway[J]. EMBO J ,2000,19(8) : 1794-1802.

共引文献11

同被引文献45

  • 1代文娟,唐绍清,刘燕华.叶绿体微卫星分析濒危植物资源冷杉的遗传多样性[J].广西科学,2006,13(2):151-155. 被引量:12
  • 2Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science, 2004, 304: 253-257.
  • 3Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci, 2010, 365:729-748.
  • 4Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol, 2013, 64:583-607.
  • 5Rogers MB, Archibald JM, Field MA, et al. Plastid- targeting peptides from the chlorarachniophyte Bigelowiella natans. J Eukaryot Microbiol, 2004, 51: 529-535.
  • 6Cavalier-Smith T. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta- algae). Philos Trans R Soc Lond B Biol Sci, 2003, 358: 109-133.
  • 7Hirakawa Y, Burki F, Keeling PJ. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell, 2012, 11:324-333.
  • 8Qidwai T, Khan, F. Antimalarial drugs and drug targets specific to fatty acid metabolic pathway of Plasmodium falciparum. Chem Biol Drug Des, 2012, 80:155-172.
  • 9Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci, 2009, 365:749-763.
  • 10Li HM, Chiu CC. Protein transport into chloroplasts. Annu Rev Plant Biol, 2011, 61:157-180.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部