期刊文献+

用于CO2探测的高功率1572nm可调谐光源 被引量:2

1572nm high power tunable laser source for atmospheric CO_2 measurement
下载PDF
导出
摘要 为了研发一种应用于CO2探测激光雷达的全光纤宽带可调谐高功率光源,以CO2的超精确吸收谱为基础,结合外腔可调谐激光器和L波段光纤放大器,进行了理论分析和实验验证,取得了针对1572nm附近吸收峰的连续调谐窄线宽光源的数据,并通过铒镱双包层光纤放大器将输出光功率提升到瓦级以上。结果表明,光源输出功率大于10dBm,边模抑制比大于50dB,线宽500kHz左右,1572nm放大器最大增益可达25.13dB,输出光功率达到1W以上。该光源具有体积小、低功耗和低成本的优势,对实现更大范围的空间CO2浓度探测分析有一定的帮助。 An all fiber, compact high power tunable laser source for atmospheric CO2 measurement was investigated. Based on the ultra precise atmospheric CO2 absorption spectrum, a tunable seed laser was designed with the peak absorption around 1572nm, and then its output power was amplified to the order of watt level with an Er-Yb double cladding fiber amplifier. The experimental results show that the laser can provide 10dBm output power with 50dB side mode suppression, 500kHz linewidth;the max gain of the fiber amplifier is 25. 13dB, output power is 1W. This laser possesses a small size, low power consumption and low cost it builds a steady foundation for the wider range of Atmospheric CO2 measurements.
出处 《激光技术》 CAS CSCD 北大核心 2012年第4期463-466,共4页 Laser Technology
关键词 激光器 可调谐光源 差分吸收 光纤放大器 lasers tunable laser source differential absorption fiber amplifier
  • 相关文献

参考文献6

二级参考文献111

共引文献84

同被引文献22

  • 1J Mao, S R Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Appl Opt, 2004, 43(4): 914-927.
  • 2S Kameyama, M Imaki, Y Hirano, et al. Development of 1.6 pm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing[J]. Opt Lett, 2009, 34(10): 1513-1515.
  • 3D Sakaizawa, C Nagasawa, T Nagai, et al. Development of a 1.6 pm differential absorption lidar with a quasi-phase- matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile[J]. Appl Opt, 2009, 48 (4): 748-757.
  • 4A Amediek, A Fix, M Wirth, et al. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide[J]. Appl Phys B: Lasers and Optics, 2008, 92(2): 295-302.
  • 5A Amediek, A Fix, G Ehret, et al. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmos Meas Tech, 2009, 2(2): 755-772.
  • 6Wei Gong, Ge Han, Xin Ma, et al. Multi-points scanning method for wavelength locking in COs differential absorption lidar[J]. Opt Commun, 2013, 305: 180-184.
  • 7, E M Georgieva, W S Heaps, E L Wilson. Differential radiometers using Fabry - Perot interferometric technique for remote sensing of greenhouse gases[J]. IEEE Transactions on Geoscience and Remote sensing, 2008, 46(10): 3115-3122.
  • 8W S Heaps. Broadband lidar technique for precision CO2 measurement[J]. SPIE, 2008, 7111: 711102.
  • 9G J Koch, J Y Beyon, F Gibert, et al.. Side-line tunable laser transmitter for differential absorption lidar measurements of COs: Design and application to atmospheric measurements[J]. Appl Opt, 2008, 47(7): 944-956.
  • 10G J Koch, B W Barnes, M Petros, et al.. Coherent differential absorption lidar measurements of CO2[J]. Appl Opt, 2004, 43 (26): 5092-5099.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部