期刊文献+

Co-Concept-Boosting视频语义索引方法

Video Semantic Indexing Based on Co-Concept-Boosting
下载PDF
导出
摘要 语义概念探测是建立视频语义索引的根本方法,传统探测方法没有充分考虑语义概念间存在的复杂关系.本文充分利用概念间关系提出了co-concept-boosting方法,该方法分为三个层次:第一层是基于上下文关系的探测模型的构建,第二层是结合概念间关系的boosting处理,第三层是对boosting过程中产生的多个探测模型的融合.利用Trecvid2005数据的实验分析证明,该方法具有良好的性能以及稳定性. Semantic concept detection is a key technique to video semantic indexing.Traditional approaches did not take account of inter-concept correlation adequately.A new co-concept-boosting approach is proposed in this paper,including three steps: the context based conceptual fusion models are built at first,then a boosting process based on inter-concept correlation is implemented,finally multi-models generated in boosting are fusioned.The experimental results on Trecvid 2005 dataset show that the proposed method achieves more remarkable and consistent improvement.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第7期1603-1607,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60802080)资助 国家自然科学基金项目(61002020)资助
关键词 视频语义索引 语义概念探测 Co-Concept-Boosting方法 基于上下文关系的语义概念融合 语义概念关系 semantic video indexing semantic concept detection Co-Concept-Boosting context based conceptual fusion inter-concept relation
  • 相关文献

参考文献13

  • 1Xie Le-xing, Yan Rong, Yang Jun. Multi-concept learning with large-scale multimedia lexicons[C]. ICIP 2008.
  • 2Chen Dan-wen, Deng Li-qiong, Yuan Zhi-min, et al. Semantic video concept detection based on correlative concept selection [ C ]. ICCEE 2010. 2010. 295-299.
  • 3Wessel Kraaij, Paul Over. TRECVID2006 HighLevel feature task: overviewE C]. Proceeding of TRECVID Workshop, 2006.
  • 4Amir A, et al. IBM research trecvid-2003 video retrieval system [ C ]. Proc. NIST TRECVID Video Retrieval Evaluation Work- shop, 2003.
  • 5Snoek C G M, et al. The mediamill trecvid 2005 semantic video search engine [ C]. Proc. 3rd TRECVID Workshop, Gaithers- burg, USA, Nov. 2005.
  • 6Naphade M, Kennedy L. A light scale concept ontology for multi- media understanding for TRECVID 2005 [ R ]. IBM Research Re- port, May 2005.
  • 7Jiang W, Chang S-F, Loui A. Active concept-based concept fusion with partial user labels [ C ]. Proceedings of 1EEE International Conference on Image Processing, Atlanta, GA, USA, 2006.
  • 8Yanagawa A, Chang S-F, Kennedy L, et al. Columbia university' s baseline detectors for 374 LSCOM semantic visual concepts[ R]. Columbia University ADVENT Technical Report # 222-2006-8, March 20. 2007.
  • 9Zha Z-J, Mei T, Hua X-S, et al. Refining video annotation by ex- ploiting pairwise concurrent relation [ C ]. In ACM Multimedia, 2007 : 345-348.
  • 10Wei X-Y, Jiang Y-G, Ngo C-W. Exploring inter-concept relation- ship with context space for semantic video indexing [ C ]. In CIVR 2009, Santorini, GR, July 8-10, 2009.

二级参考文献11

  • 1Vailaya A, Figueiredo A, Jain A,et al. Image classification for content-based indexing [J]. IEEE Transactions on Image Processing, 2001,10:117-129.
  • 2Chang E, Goh K, Sychay G,et al. Cbsa: content-based soft annotation for multimodal image retrieval using bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology ,2003, 13(1):26-38.
  • 3Szummer M, Picard R W. Indoor-outdoor image classification [C]. IEEE International Workshop on Content-based Access of Image and Video Databases, in Conjuntion with ICCV' 98, Bombay, India,1998, 42-50.
  • 4Oliva A, Torralba A. Modeling the shape of the scene: a holistie representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.
  • 5Vogel J, Schiele B. Natural scene retrieval based on a semantic modeling step[C]. International Conference on Image and Video Retrieval, LNCS,Dublin, Ireland, 2004, 3115:207-215.
  • 6Fei-fei L, Perona P, A bayesian hierarchical model for learning natural scene categories [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2005, 524-531.
  • 7Quelhas P, Monay F, Odobez J ,et al. Modeling scenes with local descriptors and latent aspects[C]. International Conference on Computer Vision, Beijing, China, 2005, 883-890.
  • 8Bosch A, Zisserman A, Munoz X. Scene classification via plsa [C]. European Conference on Computer Vision, Graz, Austria, 2006,4:517-530.
  • 9Hofmann T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2001, 41 (2) : 177-196.
  • 10Blei D, Ng A, Jordan M. Latent dirichlet allocation[J]. Journal of Machine Learning Research,2003,3:993-1022.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部