摘要
知识重组是风险管理中辅助决策者获得决策信息的重要环节,它将与应急问题情境具有强关联的文本性决策知识提供给决策者.在范畴化结构的基础上,提出一种基于遗传算法面向语义关联的知识重组方法,为风险决策知识快速获取所需的高维语义信息处理提供了新的途径.该算法从遗传编码、算子、收敛控制和参数选择4个侧面来实现进化过程.仿真实验结果表明,在强制收敛的条件下,该方法可获得较好的重组可靠性.
Knowledge reorganization is one of the key links in supporting decision-makers to acquire the information of decision-making in risk management. This process provides decision makers with textual knowledge which has strong correlation with decision-making problem situations. This paper proposes a knowledge reorganization method based on categorical structure semantic correlations based on genetic algorithm. This method provides a new way for the high- dimensional semantic information processing which are necessary for the quick knowledge acquisition of risk decision- making. The process of genetic evolution is achieved through four aspects including genetic coding, operators, convergence control and parameter selection. Simulation experiment results show that this method can obtain better reliability of reorganization under forced convergence conditions.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第7期983-990,共8页
Control and Decision
基金
国家自然科学基金项目(70901016
91024003)
关键词
风险决策
知识重组
遗传算法
范畴知识
risk decision-making support
knowledge reorganization
genetic algorithms
categorical knowledge