期刊文献+

一种基于混沌粒子群优化的OFDM系统资源分配算法 被引量:8

OFDM resource allocation algorithm based on chaos particle swarm optimization
原文传递
导出
摘要 针对无线多用户正交频分复用(OFDM)系统中功率分配问题,提出一种基于效用函数最大化框架的资源分配算法.在实际网络环境中,此类最优化算法为非凸的,利用经典最优化方法很难解决.为此,将智能优化中的粒子群方法应用到非凸优化算法设计中,并针对粒子群优化容易陷入局部极值点的问题,将Logistic混沌搜索嵌入PSO算法中,提出混沌粒子群算法.与同类算法相比,所提出算法不仅有效解决了非凸性问题,而且可以使系统具有更好的性能. This paper presents a efficient resource allocation algorithm for the multiuser orthogonal frequency division multiplexing(OFDM) system based on the network utility maximization framework. In the wireless context, the optimization problem is nonconvex, which makes the problem difficult to be solved by using the classical optimization theory. Particle swarm optimization(PSO) algorithm is applied to the design of the optimization problem. To improve the performance of standard PSO algorithm and avoid trapping to local excellent result, a chaos PSO(CPSO) algorithm is presented, which embeds logistic chaos into the PSO algorithm. The proposed algorithm can solve the nonconvex optimization problem efficiently and outforms other algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2012年第7期1096-1100,共5页 Control and Decision
基金 国家自然科学基金项目(61004063 60904048) 山东省高等学校科技计划项目(J10LG14 J09LG27) 山东省优秀中青年科学家科研奖励基金项目(BS2010DX007) 鲁东大学引进人才基金项目(LY2010017)
关键词 正交频分复用 资源分配 效用函数 粒子群 混沌 OFDM resource allocation utility function particle swarm optimization chaos
  • 相关文献

参考文献17

  • 1Bingham J A. Multicarrier modulation for data transmission: An idea whose time has come[J]. IEEE Communications Magazine, 1990, 28(5): 5-14.
  • 2Kelly F P, Maullo A, Tan D. Rate control for communication networks: Shadow prices, proportional fairness and stability[J]. J of the Operational Research Society, 1998, 49(3): 237-252.
  • 3Low S, Lapsley D E. Optimization flow control--I: Basic algorithm and convergence[J]. IEEE/ACM Trans on Networking, 1999, 7(6): 861-874.
  • 4Wong C Y, Cheng R S, Letaief K B, et al. Multiuser OFDM with adaptive subcarrier, bit and power allocation[J]. IEEE J of Selected Areas in Communications, 1999, 17(10): 1747-1758.
  • 5Krongold B S, Ramchandran K, Jones D L. Computationally efficient optimal power allocation algorithms for multicarrier communication systems[J]. IEEE Trans on Communications, 2000, 50(1): 23-27.
  • 6Hoo B, Halder J, Tellado, et al. Multiuser transmit optimization for multicarrier broadcast channels: Asymptotic FDMA capacity region and algorithms[J]. IEEE Trans on Communications, 2004, 52(6): 922-930.
  • 7Seong K, Mohseni M, Cioffi J M. Optimal resource allocation for OFDMA downlink systems[C]. Proc of IEEE ISIT. Seattle, 2006: 1394-1398.
  • 8Shez Z K, Andrews J G, Evans B L. Optimal power allocation in multiuser OFDM systems[C]. Proc of GLOBECOM. San Francisco, 2003: 337-341.
  • 9Huang J W, Agrawal R, Berry R. Downlink scheduling and resource allocation for OFDM systems[J]. IEEE Trans on Wireless Communications, 2009, 8(1): 1-9.
  • 10Cheng M H, Huang J W. Optimal resource allocation for OFDM uplink communication: A primal-dual approach, information sciences and systems[C]. The 42nd Annual Conf on CISS 2008. Princeton, 2008: 926-931.

二级参考文献76

共引文献494

同被引文献70

  • 1汪俊芳,朱光喜,金江.基于遗传算法的多用户OFDM比特加载[J].华中科技大学学报(自然科学版),2006,34(2):27-29. 被引量:9
  • 2莫愿斌,陈德钊,胡上序.求解非线性方程组的混沌粒子群算法及应用[J].计算力学学报,2007,24(4):505-508. 被引量:18
  • 3IMTIAZ Ahmed, SATYA P M. Adaptive Resource Allocation Based on Modified Genetic Algorithm and Particle Swarm Optimization for Multiuser OFDM Systems[ C ]//5th International Conference on E- lectrical and Computer Engineering,2008:211 - 216.
  • 4WONG Cheong Yui. Muhiuser Subcarrier Allocation for OFDM Transmission Using Adaptive Modulation [ J ]. Vehicular Technol- ogy Conference, 1999,1 (5) :479 - 483.
  • 5SHI Y, EBERHART R A. Modified Particle Swarm Optimizer [ C ]. IEEE World Congress on Computational Intelligence, 1998:69 - 73.
  • 6DAI Yuntao, LIU Liqiang, Li Ying. An Intelligent Parameter Se- lection Method for Particle Swarm Optimization Algorithm [C]// 2011 Fourth International Joint Conference on Computational Sci- ences and Optimization ,2011:960 - 964.
  • 7Xu Y W, Cao X B, Qiao H.An efficient tree classifier ensemble-based approach for pedestrian detection[J].Jour- nal of IEEE Transactions on Systems, Man, and Cyber- netics,2011,41(1) : 107-117.
  • 8Guo Lie,Ge Pingshu,Zhang Mingheng, et al.Pedestrian detection for intelligent transportation systems combin- ing AdaBoost algorithm and support vector machine[J]. Expert Systems with Applications, 2012,39(4) : 4274-4286.
  • 9Wang Tao, Qin Zhenxing, Zhang Shichao, et al.Cost-sensitive classifieation with inadequate labeled data[J].Information Systems, 2012,37(5) : 508-516.
  • 10Palacios A, Sanchez L, Couso I.Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data[J]. International Journal of Approximate Reasoning,2011,52 (6) :841-862.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部