期刊文献+

Mo-Si合金室温及高温拉伸力学性能研究 被引量:2

Tensile Properties of Mo-Si Alloys at Room and Elevated Temperature
原文传递
导出
摘要 采用粉末冶金技术制备了不同Si含量(0,0.1,0.3wt%Si)的Mo-Si合金板材,并在25,300,800和1200℃下进行了静拉伸试验,研究了试验温度对Mo-Si合金板材力学性能、断裂方式及微观组织的影响。结果表明:随试验温度升高,纯钼及Mo-Si合金板材强度明显下降,但延伸率以300℃为分界点呈现出先升后降的趋势。室温下Mo-Si合金的断裂方式为穿晶解理断裂,在300及800℃时主要为韧窝延性断裂,而1200℃时为沿晶断裂。对Mo-Si合金强化机制的分析表明,室温下的强化主要来源于弥散强化和固溶强化,而在高温时,固溶作用明显减弱,颗粒弥散和粗化晶粒为主要的强化手段。 The Mo-Si alloy sheets with different silicon contents were fabricated by powder-metallurgical processing, and static tensile tests were performed at 25,300, 800 and 1200 ℃, respectively. The effect of test temperatures on mechanical properties, facture mode and microstructure of Mo-Si alloys were studied. The results indicate that with increasing of tensile test temperature, the strength of the pure Mo and Mo-Si alloy sheets decrease dramatically, the elongation shows an increasing trend at lower 300 ℃ and then decreasing at higher temperatures. The fracture mode of molybdenum alloy sheets transform from transgranular cleavage fracture at room temperature to dimple fracture at 300 and 800 ℃, and then to intergranular fracture at 1200 ℃. The strengthening mechanism analysis results show that the strengthening of Mo-Si alloy originates from particle dispersion strengthening and solid solution strengthening at room temperature. While, at elevated temperature the role of solid solution strengthening weakens significantly and the particle dispersion strengthening and grain coarsening are main strengthening modes.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第6期1021-1025,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50801051 51171149) 教育部新世纪优秀人才支持计划项目(NCET-10-0876)资助
关键词 Mo-Si合金 高温拉伸 断口形貌 强化机制 Mo-Si alloy elevated temperature tensile fractography morphology strengthening mechanism
  • 相关文献

参考文献15

  • 1Meyer M, Kramer M, Akinc M. Advanced Materials[J], 1996, 8:85.
  • 2Akinc M, Meyer M K et al. Materials Science and Engineering A[J], 1999, A261:16.
  • 3Mitra R. International Materials Reviews[J], 2006, 51 : 13.
  • 4Sakidja R, Perepezko J H. Metallurgical and Materials Transactions[J], 2005, 36:507.
  • 5Jain P, Kumar K S. In Wiezorek J eds. AdvancedIntermetallic- based Alloys, MRS Symposium Proceedings Series[C]. Warrendale, PA: Materials Research Society, 2007, 980:303.
  • 6Jain P, Alur A P, Kumar K S. Scripta Materialia[J], 2006, 54:13.
  • 7Sturma D, Heilmaier M. Materials Science and Engineering A[J], 2007, 463:107.
  • 8Morito F, Danylenko N I, Saito H et al. In: Senkov O N eds. Metallic Materials with High Structural Efficiency[C]. Kluwer, Dordrecht, 2004:347.
  • 9Jain P, Kumar K S. Scripta Materialia[J], 2010, 62:1.
  • 10Meyer M, Kramer M, Akinc M. Advanced Materials[J], 1996 (8): 85.

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部