期刊文献+

基于组合滤波和时频原子变换的故障录波数据分析新算法 被引量:4

Fault recording data analysis based on combinational filter and time-frequency transform
下载PDF
导出
摘要 提出基于组合滤波和时频原子变换的故障录波数据分析新算法。组合滤波通过推导并分析非同步采样时采样值修正算法对非周期分量的滤波误差公式,提出利用差分法有效消除误差,实现更理想滤波。时频原子变换具有良好的频率特性,能克服非同步采样影响;具有复带通滤波特性,能准确输出基波复相量而不受其他频带分量干扰;利用灵活可调的时频域带宽,能获取较短的计算数据窗。仿真研究表明,所提方法有快速动态特性,能在固定采样率条件下有效滤除非周期分量并实现故障录波数据基波幅值、频率和相位的精确测量,同时具有较好的抗干扰性能。 An analysis algorithm based on CF(Combinational Filter) and TFT(Time-Frequency Translorm) is proposed for fault recording data. The sampling value correction error due to asynchronous sampling is analyzed and it is proposed to use difference method to eliminate the error for achieving ideal filtering. Being immune to the effect of asynchronous sampling,TFT has ideal frequency characteristics. Because of its complex band-pass filter characteristics,it outputs the fundamental complex phasor without the components of other bands. Because the time-frequency bandwidth of TFT can be flexibly adjusted,shorter calculation data window is thus obtained. Simulative results indicate that,with better dynamic performance and anti- interference capability,the proposed algorithm filters effectively the aperiodic components,measures accurately the magnitude ,frequency and phase of fundamental with the fixed sampling rate.
出处 《电力自动化设备》 EI CSCD 北大核心 2012年第7期83-88,共6页 Electric Power Automation Equipment
基金 国家自然科学基金资助项目(50677044,51177111) 湖北省自然科学基金青年杰出人才项目(2006ABB006)~~
关键词 故障录波 组合滤波 时频原子变换 差分法 非周期分量 动态特性 故障分析 fault recording combinational filter time-frequency transform difference method aperiodiccomponent dynamic characteristic failure analysis
  • 相关文献

参考文献18

二级参考文献100

共引文献199

同被引文献54

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2SORENSEN P,CUTULULIS N A,VIGUERAS-RODRIGUEZ A, et al. Power fluctuations from large wind fains[J]. IEEE Trans on Power Systems,2007,22(3):958-965.
  • 3刘振亚.巾圄电力与能源[M].北京:中国电力出版社,2012:104.109.
  • 4GIEBEL G,LANDBERG L,NIELSEN T S,et al. The ZEPHYR- project:the next generation prediction system[C]//Proc of the 2001 European Wind Energy Conference,EWEC'01. Copenhagen, Denmark: [s.n.] ,2001:777-780.
  • 5国家电网公司.Q/GDW392-2009风电场接人电网技术规定实施细则[S].北京:国家电网公司企业标准,2009.
  • 6SIDERATOS G,HATZIARGYRIOU N D. An advanced statistical method for wind power forecasting[J 1. IEEE Trans on Power Systems, 2007,22 ( 1 ) : 258-265.
  • 7MALLAT S G,ZHANG Z. Matching pursuits with time frequency dictionaries[J]. IEEE Trans on Signal Processing,1993,41 (12): 3397-3415.
  • 8LOVISLO L,da SILVA E A B,RODRIGUES M A M,et al. Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids[J]. IEEE Trans on Signal Processing,2005,53(10):3831-3846.
  • 9XU Peng,YAO Dezhong. Two dictionaries matching pursuit for sparse decomposition of signals[J]. IEEE Trans on Signal Pro- cessing, 2006,86 ( 11 ) : 3472-3480.
  • 10KARNIOTAKIS G,STAVRAKAKIS S G,NOGARET E F. Wind power forecasting using advanced neural network models [J]. IEEE Trans on Energy Conversion,1996,11(4):762-767.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部